[1] 余亚莹, 邵高能, 圣忠华, 等. 国内外香稻资源遗传多样性研究[J]. 植物分类与资源学报, 2015, 37(6), 871−880
[2] 韩丽欣, 任红波, 孟利. 大米中风味物质的形成与变化[J]. 中国农学通报, 2022, 38(30), 126−134
[3]

HU X Q, LU L, GUO Z L, et al. Volatile compounds, affecting factors and evaluation methods for rice aroma: a review [J]. Trends in Food Science & Technology, 2020, 97, 136−146. https://doi.org/10.1016/j.jpgs.2020.01.003 doi:  10.1016/j.jpgs.2020.01.003
[4]

BUTTERY R G, LING L C, JULIANO B O, et al. Cooked rice aroma and 2-acetyl-1-pyrroline [J]. Journal of Agricultural and Food Chemistry, 1983, 31 (4), 823−826. https://doi.org/10.1021/jf00118a036 doi:  10.1021/jf00118a036
[5] 周汉琛, 杨霁虹, 徐玉婕, 等. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5), 638−648. https://doi.org/10.3969/j.issn.1000-369X.2022.05.004 doi:  10.3969/j.issn.1000-369X.2022.05.004
[6]

EDRIS A E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review [J]. Phytotherapy Research, 2007, 21 (4), 308−323. https://doi.org/10.1002/ptr.2072 doi:  10.1002/ptr.2072
[7]

SI W, NI X, GONG J, et al. Antimicrobial activity of essential oils and structurally related synthetic food additives towards Clostridium perfringens [J]. Journal of Applied Microbiology, 2009, 106 (1), 213−220. https://doi.org/10.1111/j.1365-2672.2008.03994.x doi:  10.1111/j.1365-2672.2008.03994.x
[8] 周勇, 姚三桃, 翁玉春, 等. 香叶醇抗真菌作用的研究[J]. 真菌学报, 1983, 2(4), 262−264. https://doi.org/10.13346/j.mycosystema.1983.04.013 doi:  10.13346/j.mycosystema.1983.04.013
[9]

BHAVANIRAMYA S, VISHNUPRIYA S, AL-ABOODY M S, et al. Role of essential oils in food safety: antimicrobial and antioxidant applications [J]. Grain & Oil Science and Technology, 2019, 2 (2), 49−55. https://doi.org/10.1016/j.gaost.2019.03.001 doi:  10.1016/j.gaost.2019.03.001
[10] 罗彪彪. 应用酵母表面展示技术体外重构甲羟戊酸途径合成香叶醇[D]. 武汉: 华中农业大学, 2020. https://doi.org/10.27158/d.cnki.ghznu.2020.001106
[11] 殷焕然, 何玉池, 李洋. GC-MS/MS法分析水稻叶子单萜倍半萜类化合物的组成[J]. 生物过程, 2017, 7(4), 54−59. https://doi.org/10.12677/bp.2017.74008 doi:  10.12677/bp.2017.74008
[12]

DEGENHARDT J, KÖLLNER T G, GERSHENZON J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants [J]. Phytochemistry, 2009, 70 (15/16), 1621−1637. https://doi.org/10.1016/j.phytochem.2009.07.030 doi:  10.1016/j.phytochem.2009.07.030
[13]

IIJIMA Y, GANG D R, FRIDMAN E, et al. Characterization of geraniol synthase from the peltate glands of sweet basil [J]. Plant Physiology, 2004, 134 (1), 370−379. https://doi.org/10.1104/pp.103.032946 doi:  10.1104/pp.103.032946
[14]

LI X, XU Y Y, SHEN S L, et al. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit [J]. Journal of Experimental Botany, 2017, 68 (17), 4929−4938. https://doi.org/10.1093/jxb/erx316 doi:  10.1093/jxb/erx316
[15]

JIANG H, ZHANG M T, YU F, et al. A geraniol synthase regulates plant defense via alternative splicing in tea plants [J]. Horticulture Research, 2023, 10 (10), uhad184. https://doi.org/10.1093/hr/uhad184 doi:  10.1093/hr/uhad184
[16]

MAGNARD J L, ROCCIA A, CAISSARD J C, et al. Biosynthesis of monoterpene scent compounds in roses [J]. Science, 2015, 349 (6243), 81−83. https://doi.org/10.1126/science.aab0696 doi:  10.1126/science.aab0696
[17]

BERGMAN M E, BHARDWAJ M, PHILLIPS M A. Cytosolic geraniol and citronellol biosynthesis require a Nudix hydrolase in rose-scented geranium (Pelargonium graveolens) [J]. The Plant Journal, 2021, 107 (2), 493−510. https://doi.org/10.1111/tpj.15304 doi:  10.1111/tpj.15304
[18]

MARUTA T, YOSHIMOTO T, ITO D, et al. An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis [J]. Plant and Cell Physiology, 2012, 53 (6), 1106−1116. https://doi.org/10.1093/pcp/pcs054 doi:  10.1093/pcp/pcs054
[19]

ARCZEWSKA K D, KUŚMIEREK J T. Bacterial DNA repair genes and their eukaryotic homologues: 2. Role of bacterial mutator gene homologues in human disease. Overview of nucleotide pool sanitization and mismatch repair systems [J]. Acta Biochimica Polonica, 2007, 54 (3), 435−457. https://doi.org/10.18388/abp.2007_3220 doi:  10.18388/abp.2007_3220
[20]

OGAWA T, MURAMOTO K, TAKADA R, et al. Modulation of NADH levels by Arabidopsis Nudix hydrolases, AtNUDX6 and 7, and the respective proteins themselves play distinct roles in the regulation of various cellular responses involved in biotic/abiotic stresses [J]. Plant and Cell Physiology, 2016, 57 (6), 1295−1308. https://doi.org/10.1093/pcp/pcw078 doi:  10.1093/pcp/pcw078
[21]

OGAWA T, YOSHIMURA K, MIYAKE H, et al. Molecular characterization of organelle-type Nudix hydrolases in Arabidopsis [J]. Plant Physiology, 2008, 148 (3), 1412−1424. https://doi.org/10.1104/pp.108.128413 doi:  10.1104/pp.108.128413
[22]

TANAKA S, KIHARA M, SUGIMOTO M. Structure and molecular characterization of barley Nudix hydrolase genes [J]. Bioscience, Biotechnology, and Biochemistry, 2015, 79 (3), 394−401. https://doi.org/10.1080/09168451.2014.978259 doi:  10.1080/09168451.2014.978259
[23]

KONDO Y, RIKIISHI K, SUGIMOTO M. Rice Nudix hydrolase OsNUDX2 sanitizes oxidized nucleotides [J]. Antioxidants, 2022, 11 (9), 1805. https://doi.org/10.3390/antiox11091805 doi:  10.3390/antiox11091805
[24]

LIU Y R, ZHANG W, WANG Y H, et al. Nudix hydrolase 14 influences plant development and grain chalkiness in rice [J]. Frontiers in Plant Science, 2022, 13, 1054917. https://doi.org/10.3389/FPLS.2022.1054917 doi:  10.3389/FPLS.2022.1054917
[25]

RAO S, CAO H B, O’HANNA F J, et al. Nudix hydrolase 23 post-translationally regulates carotenoid biosynthesis in plants [J]. The Plant Cell, 2024, 36 (5), 1868−1891. https://doi.org/10.1093/plcell/koae030 doi:  10.1093/plcell/koae030
[26]

MARUTA T, YOSHIMOTO T, ITO D, et al. An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in Flavin homeostasis [J]. Plant and Cell Physiology, 2012, 53(6): 1106−1116.(查阅网上资料,本条文献与第18条文献重复,请确认) https://doi.org/10.1093/pcp/pcs054
[27] 陈宏法, 胡时开, 唐绍清, 等. 稻米品质遗传改良现状及展望[J]. 长江大学学报(自然科学版), 2023, 20(5), 110−123. https://doi.org/10.16772/j.cnki.1673-1409.2023.05.002 doi:  10.16772/j.cnki.1673-1409.2023.05.002
[28] 邵高能, 谢黎虹, 焦桂爱, 等. 利用CRISPR/CAS9技术编辑水稻香味基因Badh2[J]. 中国水稻科学, 2017, 31(2), 216−222. https://doi.org/10.16819/j.1001-7216.2017.6098 doi:  10.16819/j.1001-7216.2017.6098
[29]

CHEN W, VILJOEN A M. Geraniol—A review of a commercially important fragrance material [J]. South African Journal of Botany, 2010, 76 (4), 643−651. https://doi.org/10.1016/j.sajb.2010.05.008 doi:  10.1016/j.sajb.2010.05.008
[30]

PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China [J]. Plant Production Science, 2009, 12 (1), 3−8. https://doi.org/10.1626/pps.12.3 doi:  10.1626/pps.12.3