[1] ALLISON P A, SMITH C R, KUKERT H, et al. Deep-water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina Basin [J]. Paleobiology, 1991, 17: 78 − 89. doi:  10.1017/S0094837300010368
[2] SMITH C R. Bigger is better: the role of whales as detritus in marine ecosystems [M] // ESTES J A, DEMASTER P, DOAK D F, et al. Berkeley: University of California Press, 2006: 286-300.
[3] GLOVER A G, HIGGS N D, BAGLEY P M, et al. A live video observatory reveals temporal processes at a shelf-depth whale-fall [J]. Cahiers De Biologie Marine, 2010, 51: 1 − 7.
[4] KEMP K M, JAMIESON A J, BAGLEY P M, et al. Consumption of large bathyal food fall, a six month study in the NE Atlantic [J]. Marine Ecology Progress Series, 2006, 310: 65 − 76. doi:  10.3354/meps310065
[5] SOLTWEDEL T, GUILINI K, SAUTER E, et al. Local effects of large food-falls on nematode diversity at an arctic deep-sea site: Results from an in situ experiment at the deep-sea observatory HAUSGARTEN [J]. Journal of Experimental Marine Biology & Ecology, 2018, 502: 129 − 141.
[6] CARTES J E, SOLER-MEMBRIVES A, STEFANESCU C, et al. Contributions of allochthonous inputs of food to the diets of benthopelagic fish over the northwest Mediterranean slope (to 2300m) [J]. Deep-Sea Research I, 2016, 109: 123 − 136. doi:  10.1016/j.dsr.2015.11.001
[7] SMITH C R, GLOVER A G, TREUDE T, et al. Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution [J]. Annual Review of Marine Science, 2015, 7: 571 − 596. doi:  10.1146/annurev-marine-010213-135144
[8] SMITH C R, BACO A R. Ecology of whale falls at the deep-sea floor [J]. Oceanography & Marine Biology, 2003, 41: 311 − 354.
[9] BRUUN A F. The abyssal fauna: its ecology, distribution and origin [J]. Nature, 1956, 177: 1105 − 1108. doi:  10.1038/1771105a0
[10] SMITH C R, KUKERT H, WHEATCROFT R A, et al. Vent fauna on whale remains [J]. Nature, 1989, 34: 127 − 128.
[11] SMITH K E, THATJE S, SINGH H, et al. Discovery of a recent, natural whale fall on the continental slope off Anvers Island, western Antarctic Peninsula [J]. Deep-Sea Research I, 2014, 90: 76 − 80. doi:  10.1016/j.dsr.2014.04.013
[12] DE FREITAS R C, MARQUES H, DA SILVA M A C, et al. Evidence of selective pressure in whale fall microbiome proteins and its potential application to industry [J]. Marine Genomics, 2019, 45: 21 − 27. doi:  10.1016/j.margen.2018.11.004
[13] LI Q, LIU Y, LI G, et al. Review of the impact of Whale Fall on biodiversity in deep-sea ecosystems [J]. Frontiers in Ecology and Evolution, 2022, 10: 885572. doi:  10.3389/fevo.2022.885572
[14] JEFFERSON T A, WEBBER M A, PITMAN R L. Marine mammals of the world: a comprehensive guide to their identification [M]. London: Academic Press, 2015.
[15] HIGGS N D, LITTLE C T S, GLOVER A G. Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology [J]. Proceedings of the Royal Society B:Biological Sciences, 2011, 278: 9 − 17. doi:  10.1098/rspb.2010.1267
[16] GERMAN C R. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map [J]. PLoS ONE, 2011, 6: e23259. doi:  10.1371/journal.pone.0023259
[17] SHIMABUKURO M, RIZZO A E, ALFARO-LUCAS J M. Sphaerodoropsis kitazatoi, a new species and the first record of Sphaerodoridae (Annelida: Phyllodocida) in SW Atlantic abyssal sediments around a whale carcass [J]. Deep-Sea Research II, 2017, 146: 18 − 26. doi:  10.1016/j.dsr2.2017.04.003
[18] SHIMABUKURO M, SANTOS C S G, ALFARO-LUCAS J M, et al. A new eyeless species of Neanthes (Annelida: Nereididae) associated with a whale-fall community from the deep Southwest Atlantic Ocean [J]. Deep-Sea Research II, 2017, 146: 27 − 34. doi:  10.1016/j.dsr2.2017.10.013
[19] FUJIWARA Y, JIMI N, SUMIDA P Y G, et al. New species of bone-eating worm Osedax from the abyssal South Atlantic Ocean (Annelida, Siboglinidae) [J]. ZooKeys, 2019, 814: 53 − 69. doi:  10.3897/zookeys.814.28869
[20] HASEGAWA K, FUJIWARA Y, OKUTANI T, et al. A new gastropod associated with a deep-sea whale carcass from São Paulo Ridge, Southwest Atlantic [J]. Zootaxa, 2019, 4568: 347 − 356. doi:  10.11646/zootaxa.4568.2.9
[21] ROUSE G W, GOFFREDI S K, VRIJENHOEK R C. Osedax: Bone-eating marine worms with dwarf males [J]. Science, 2004, 305: 668 − 671. doi:  10.1126/science.1098650
[22] WHITEMAN N K. Between a whale bone and the deep blue sea: the provenance of dwarf males in whale bone-eating tubeworms [J]. Molecular Ecology, 2008, 17: 4395 − 4397. doi:  10.1111/j.1365-294X.2008.03938.x
[23] MADERSPACHER F. Evolution: They never come back, or do they [J]? Current Biology, 2015, 25: 62-64.
[24] ROUSE G W, GOFFREDI S K, JOHNSON S B, et al. Not whale-fall specialists, Osedax worms also consume fishbones [J]. Biology Letters, 2011, 7: 736 − 739. doi:  10.1098/rsbl.2011.0202
[25] JONES E G, COLLINS M A, BAGLEY P M, et al. The fate of cetacean carcasses in the deep sea: observations on consumption rates and succession of scavenging species in the abyssal northeast Atlantic Ocean [J]. Proceedings of the Royal Society B:Biological Sciences, 1998, 265: 1119 − 1127. doi:  10.1098/rspb.1998.0407
[26] BACO-TAYLOR A R. Food-web structure, succession and phylogenetics on deep-sea whale skeletons [D]. Hawaii: University of Hawaii, 2002.
[27] DEBENHAM N J, LAMBSHEAD P J D, FERRERO T J. The impact of whale falls on nematode abundance in the deep sea [J]. Deep-Sea Research I, 2004, 51: 701 − 706. doi:  10.1016/j.dsr.2004.02.004
[28] SMITH C R. Nekton falls, low-intensity disturbance and community structure of infaunal benthos in the deep-sea [J]. Journal of Marine Research, 1986, 44: 567 − 600. doi:  10.1357/002224086788403015
[29] LUNDSTEN L, SCHLINING K L, FRASIER K, et al. Time-series analysis of six whale-fall communities in Monterey Canyon, California, USA [J]. Deep-Sea Research I, 2010, 57: 1573 − 1584. doi:  10.1016/j.dsr.2010.09.003
[30] ALFARO-LUCAS J M, SHIMABUKURO M, OGATA I V, et al. Trophic structure and chemosynthesis contributions to heterotrophic fauna inhabiting an abyssal whale carcass [J]. Marine Ecology Progress Series, 2018, 596: 1 − 12. doi:  10.3354/meps12617
[31] CONNELL J H, SLATYER R O. Mechanisms of succession in natural communities and their role in community stability and organization [J]. American Naturalist, 1977, 982: 1119 − 1144.
[32] AGUZZI J, CIUFFARDI E F T, SCHIRONE A, et al. Faunal activity rhythms influencing early community succession of an implanted whale carcass offshore Sagami Bay, Japan [J]. Scientific Reports, 2018, 8: 11163. doi:  10.1038/s41598-018-29431-5
[33] REISDORF A G, BUX R, WYLER D, et al. Float, explode or sink: postmortem fate of lung-breathing marine vertebrates [J]. Palaeobiodiversity and Palaeoenvironments, 2012, 92: 67 − 81. doi:  10.1007/s12549-011-0067-z
[34] DAHLGREN T G, WIKLUND H, KALLSTROM B, et al. A shallow-water whale-fall experiment in the north Atlantic [J]. Cahiers De Biologie Marine, 2006, 47: 385 − 389.
[35] FUJIWARA Y, KAWATO M, YAMAMOTO T, et al. Three-year investigations into sperm whale-fall ecosystems in Japan [J]. Marine Ecology, 2007, 28: 219 − 232. doi:  10.1111/j.1439-0485.2007.00150.x
[36] PAVLYUK O N, TREBUKHOVA Y A, TARASOV V G. The impact of implanted whale carcass on nematode communities in shallow water area of Peter the Great Bay (East Sea) [J]. Ocean Science Journal, 2009, 4: 181 − 188.
[37] BRABY C E, ROUSE G W, JOHNSON S B, et al. Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whale-falls in Monterey Bay, California [J]. Deep-Sea Research I, 2007, 54: 1773 − 1791. doi:  10.1016/j.dsr.2007.05.014
[38] ONISHI Y, SHIMAMURA S, YAMANAKA T, et al. Variation of geochemical environments associated with whale-fall biomass mineralization processes in the sediment during the mobile scavenger, enrichment opportunist, and sulfophilic stages [J]. Marine Biology, 2018, 165: 141. doi:  10.1007/s00227-018-3398-8
[39] RUXTON G D, BAILEY D M. 2005. Searching speeds and the energetic feasibility of an obligate whale-scavenging fish [J]. Deep-Sea Research I, 52: 1536-1541.
[40] SMITH C R, BACO A R, GLOVER A G. Faunal succession on replicate deep-sea whale falls: time scales and vent-seep affinities [J]. Cahiers De Biologie Marine, 2002, 43: 293 − 297.
[41] GOEDERT J L, SQUIRES R L, BARNES L G. Paleoecology of whale-fall habitats from deep-water Oligocene rocks, Olympic Peninsula, Washington state [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1995, 118: 151 − 158. doi:  10.1016/0031-0182(94)00139-Y
[42] BACO A R, SMITH C R, PEEK A S, et al. The phylogenetic relationships of whale-fall vesicomyid clams based on mitochondrial COI DNA sequences [J]. Marine Ecology Progress, 1999, 182: 137 − 147. doi:  10.3354/meps182137
[43] THUBAUT J, PUILLANDRE N, FAURE B, et al. The contrasted evolutionary fates of deep sea chemosynthetic mussels (Bivalvia, Bathymodiolinae) [J]. Ecology & Evolution, 2013, 3: 4748 − 4766.
[44] FELDMAN R A, SHANK T M, BLACK M B, et al. Vestimentiferan on a Whale Fall [J]. Biological Bulletin, 1998, 194: 116 − 119. doi:  10.2307/1543041
[45] FUJITA Y, MATSUMOTO H, FUJIWARA Y, et al. Phylogenetic relationships of deep-sea bathymodiolus mussels to their mytilid relatives from sunken whale carcasses and wood [J]. Venus, 2009, 67: 123 − 134.
[46] DISTEL D L, BACO A R, CHUANG E, et al. Marine ecology: Do mussels take wooden steps to deep-sea vents? [J]. Nature, 2000, 403: 725 − 726. doi:  10.1038/35001667
[47] LORION J, BUGE B, CRUAUD C, et al. New insights into diversity and evolution of deep-sea Mytilidae (Mollusca: Bivalvia) [J]. Molecular Phylogenetics & Evolution, 2010, 57: 71 − 83.
[48] KIEL S, GOEDERT J L. Deep-sea food bonanzas: early Cenozoic whale-fall communities resemble wood-fall rather than seep communities [J]. Proceedings of the Royal Society B:Biological Sciences, 2006, 273: 2625 − 2631. doi:  10.1098/rspb.2006.3620
[49] BUTMAN C A, CARLTON J T, PALUMBI S R. Whaling effects on deep-sea biodiversity [J]. Conservation Biology, 1995, 9: 462 − 464. doi:  10.1046/j.1523-1739.1995.9020462.x
[50] SMITH C R, BERNARDINO A F, BACO A, et al. The seven-year enrichment: macrofaunal succession in deep-sea sediments around a 30-tonne whale fall in the Northeast Pacific [J]. Marine Ecology Progress Series, 2014, 515: 133 − 149. doi:  10.3354/meps10955
[51] SMITH C R, ROMAN J, NATION J B. A metapopulation model for whale-fall specialists: The largest whales are essential to prevent species extinctions [J]. Journal of Marine Research, 2019, 2: 283 − 302.
[52] WIKLUND H. Three new species of Ophryotrocha (Annelida: Dorvilleidae) from a whale-fall in the North-East Atlantic [J]. Zootaxa, 2009, 2228: 43 − 56. doi:  10.11646/zootaxa.2228.1.3
[53] SILVIA D, DOMINICI S, GLOVER A G, et al. Molluscs from a shallow-water whale-fall and their affinities with adjacent benthic communities on the Swedish west coast [J]. Marine Biology Research, 2014, 10: 3 − 16. doi:  10.1080/17451000.2013.793811
[54] NAGANUMA T, WADA H, FUJIOKA K. Biological community and sediment fatty acids associated with the deep-sea whale skeleton at the Torishima Seamount [J]. Journal of Oceanography, 1996, 52: 1 − 15. doi:  10.1007/BF02236529
[55] SILVA A P, COLAçO A, RAVARA A, et al. The first whale fall on the Mid-Atlantic Ridge: Monitoring a year of succession [J]. Deep-Sea Research I, 2021, 178: 103662. doi:  10.1016/j.dsr.2021.103662
[56] AMON D J, GLOVER A G, WIKLUND H, et al. The discovery of a natural whale fall in the Antarctic deep sea [J]. Deep-Sea Research II, 2013, 92: 87 − 96. doi:  10.1016/j.dsr2.2013.01.028
[57] 王丕烈. 中国鲸类 [M]. 北京: 化学工业出版社, 2012.
[58]

LIN M, XING L, FANG L, et al. Can local ecological knowledge provide meaningful information on coastal cetacean diversity? A case study from the northern South China Sea [J]. Ocean & Coastal Management, 2019, 172: 117 − 127.
[59]

LIN M, LIU M, CARUSO F, et al. A pioneering survey of deep-diving and off-shore cetaceans in the northern South China Sea [J]. Integrative Zoology, 2020, 16: 1 − 11.