[1] |
中国科学院中国植物志编辑委员会. 中国植物志-第一卷-总论[M]. 北京: 科学出版社, 2004: 219. |
[2] |
王景飞, 吕德任, 黄赛, 等. 海南省濒危水生植物水角的资源现状及调查分析[J]. 中国园艺文摘, 2017, 33(12): 67 − 69. doi: 10.3969/j.issn.1672-0873.2017.12.027 |
[3] |
FRAME B R, SHOU H X, CHIKWAMBA R K, et al. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system[J]. Plant Physiology, 2002, 129(1): 13 − 22. doi: 10.1104/pp.000653 |
[4] |
NISHIMURA A, AICHI I, MATSUOKA M. A protocol for Agrobacterium-mediated transformation in rice[J]. Nature Protocols, 2006, 1(6): 2796 − 2802. doi: 10.1038/nprot.2006.469 |
[5] |
GUREL S, GUREL E, MILLER T I, et al. Agrobacterium-mediated transformation of Sorghum bicolor using immature embryos[M]//DUNWELL J M, WETTEN A C. Transgenic plants: methods and protocols. 2nd ed. New York: Humana Press, 2012: 109-122. doi: 10.1007/978-1-61779-558-9_10 |
[6] |
AGGARWAL P R, NAG P, CHOUDHARY P, et al. Genotype-independent Agrobacterium rhizogenes-mediated root transformation of chickpea: a rapid and efficient method for reverse genetics studies[J]. Plant Methods, 2018, 14(1): 55. doi: 10.1186/s13007-018-0315-6 |
[7] |
CHEN L Y, QIN L, ZHOU L L, et al. A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean[J]. New Phytologist, 2019, 221(4): 2013 − 2025. doi: 10.1111/nph.15541 |
[8] |
FAN Y L, ZHANG X H, ZHONG L J, et al. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation[J]. BMC Plant Biology, 2020, 20(1): 208. doi: 10.1186/s12870-020-02421-4 |
[9] |
WANG L J, WANG W Q, MIAO Y, et al. Development of transgenic composite Stylosanthes plants to study root growth regulated by a β-expansin gene, SgEXPB1, under phosphorus deficiency[J]. Plant Cell Reports, 2023, 42(3): 575 − 585. doi: 10.1007/s00299-023-02978-y |
[10] |
张雯, 王宇斐, 郭延平. 高等植物6-磷酸海藻糖信号调控研究进展[J]. 植物生理学报, 2016, 52(4): 394 − 400. doi: 10.13592/j.cnki.ppj.2016.0014 |
[11] |
丁泽红, 付莉莉, 吴春来, 等. 木薯MeTPS1基因克隆、表达及生物信息学分析[J]. 江苏农业科学, 2018, 46(9): 28 − 33. doi: 10.15889/j.issn.1002-1302.2018.09.006 |
[12] |
GARG A K, KIM J K, OWENS T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(25): 15898 − 15903. doi: doi.org/10.1073/pnas.252637799 |
[13] |
巩涛, 刘德海, 王继雯, 等. 海藻糖合成途径及分子生物学研究进展[J]. 中国农学通报, 2016, 32(14): 62 − 67. doi: 10.3969/j.issn.1009-4229.2016.08.008 |
[14] |
郭蓓, 胡磊, 何欣, 等. 海藻糖-6-磷酸合成酶转基因烟草提高耐盐性的研究[J]. 植物学通报, 2008, 25(1): 41 − 49. doi: 10.3969/j.issn.1674-3466.2008.01.006 |
[15] |
LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011, 234(5): 1007 − 1018. doi: 10.1007/s00425-011-1458-0 |
[16] |
HAN B Y, FU L L, ZHANG D, et al. Interspecies and intraspecies analysis of trehalose contents and the biosynthesis pathway gene family reveals crucial roles of trehalose in osmotic-stress tolerance in cassava[J]. International Journal of Molecular Sciences, 2016, 17(7): 1077. doi: 10.3390/ijms17071077 |
[17] |
LI X X, ZHENG J K, YANG Y Q, et al. INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development[J]. Plant Physiology, 2018, 178(3): 1233 − 1248. doi: 10.1104/pp.18.01018 |
[18] |
YAN P, ZENG Y J, SHEN W T, et al. Nimble cloning: a simple, versatile, and efficient system for standardized molecular cloning[J]. Frontiers in Bioengineering and Biotechnology, 2020, 7: 460. doi: 10.3389/fbioe.2019.00460 |
[19] |
YAN P, TUO D, SHEN W T, et al. A Nimble Cloning-compatible vector system for high-throughput gene functional analysis in plants[J]. Plant Communications, 2023, 4(2): 100471. doi: 10.1016/j.xplc.2022.100471 |
[20] |
王景飞, 符瑞侃, 任军方, 等. 濒危水生植物水角的离体培养技术[J]. 江苏农业科学, 2019, 47(3): 110 − 113. doi: 10.15889/j.issn.1002-1302.2019.03.027 |
[21] |
GUO Z L, CAO H R, ZHAO J, et al. A natural uORF variant confers phosphorus acquisition diversity in soybean[J]. Nature Communications, 2022, 13(1): 3796. doi: 10.1038/s41467-022-31555-2 |
[22] |
梅错, 刘志鹏. 发根农杆菌介导的箭筈豌豆毛状根遗传转化体系的建立[J]. 中国草地学报, 2020, 42(5): 1 − 7. doi: 10.16742/j.zgcdxb.20190305 |
[23] |
FATHI R, MOHEBODINI M, CHAMANI E. High-efficiency Agrobacterium rhizogenes-mediated genetic transformation in Cichorium intybus L. via removing macronutrients[J]. Industrial Crops and Products, 2019, 128: 572 − 580. doi: 10.1016/j.indcrop.2018.11.050 |
[24] |
李莉, 黄群策, 秦广雍. 海藻糖在提高植物抗逆性方面的研究进展[J]. 生物学通报, 2003, 38(6): 6 − 7. doi: 10.3969/j.issn.0006-3193.2003.06.003 |
[25] |
丁泽红, 铁韦韦, 付莉莉, 等. 木薯海藻糖合成酶基因MeTPS6克隆及其在非生物胁迫下的表达分析[J]. 南方农业学报, 2017, 48(11): 1923 − 1929. doi: 10.3969/j.issn.2095-1191.2017.11.01 |
[26] |
罗颖洁, 武建新, 文昭竹, 等. 白三叶萌发期耐旱性评价中PEG6000适宜浓度筛选[J]. 湖南生态科学学报, 2018, 5(4): 6 − 11. doi: 10.3969/j.issn.2095-7300.2018.04.002 |
[27] |
李静静, 任永哲, 白露, 等. PEG-6000模拟干旱胁迫下不同基因型小麦品种萌发期抗旱性的综合鉴定[J]. 河南农业大学学报, 2020, 54(3): 368 − 377. doi: 10.16445/j.cnki.1000-2340.20200622.001 |
[28] |
GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5): 343 − 345. doi: 10.1038/nmeth.1318 |
[29] |
HARTLEY J L, TEMPLE G F, BRASCH M A. DNA cloning using in vitro site-specific recombination[J]. Genome Research, 2000, 10(11): 1788 − 1795. doi: 10.1101/gr.143000 |