| [1] | QIN Y Q, REN X Y, ZHANG Y K, et al. Distribution characteristics of antibiotic resistance genes and microbial diversity in the inshore aquaculture area of Wenchang, Hainan, China[J]. Science of the Total Environment, 2024, 914: 169695. doi: 10.1016/j.scitotenv.2023.169695 |
| [2] | 曹晏文, 刘丰铭, 乔明强. 噬菌体裂解酶抑菌功能与应用研究进展[J]. 农产品加工, 2024(12): 74 − 78. doi: 10.16693/j.cnki.1671-9646(X).2024.12.017 |
| [3] | 闵德省. 葡萄球菌噬菌体裂解酶的研究进展[J]. 福建畜牧兽医, 2025, 47(2): 64 − 67. doi: 10.3969/j.issn.1003-4331.2025.02.019 |
| [4] | 张瑞凌, 冼盈, 张扣兴. 鲍曼不动杆菌感染与免疫研究进展[J]. 中国感染与化疗杂志, 2017, 17(2): 224 − 228. doi: 10.16718/j.1009-7708.2017.02.022 |
| [5] | FLEMING A. Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, reprinted from the British Journal of Experimental Pathology 10: 226-236, 1929[J]. Reviews of Infectious Diseases, 1980, 2(1): 129 − 139. doi: 10.1093/clinids/2.1.129 |
| [6] | CHRISTAKI E, MARCOU M, TOFARIDES A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence[J]. Journal of Molecular Evolution, 2020, 88(1): 26 − 40. doi: 10.1007/s00239-019-09914-3 |
| [7] | LOPATEK M, WIECZOREK K, OSEK J. Antimicrobial resistance, virulence factors, and genetic profiles of Vibrio parahaemolyticus from seafood[J]. Applied and Environmental Microbiology, 2018, 84(16): e00537 − 18. doi: 10.1128/AEM.00537-18 |
| [8] | MARSHALL B M, LEVY S B. Food animals and antimicrobials: impacts on human health[J]. Clinical Microbiology Reviews, 2011, 24(4): 718 − 733. doi: 10.1128/CMR.00002-11 |
| [9] | PREENA P G, SWAMINATHAN T R, KUMAR V J R, et al. Antimicrobial resistance in aquaculture: a crisis for concern[J]. Biologia, 2020, 75(9): 1497 − 1517. doi: 10.2478/s11756-020-00456-4 |
| [10] | 王昕, 韩语, 潘纪汶, 等. 临床分离粪肠球菌的毒力基因和耐药基因检测及其耐药性研究[J]. 热带生物学报, 2023, 14(2): 138 − 144. doi: 10.15886/j.cnki.rdswxb.2023.02.001 |
| [11] | FISHBEIN S R S, MAHMUD B, DANTAS G. Antibiotic perturbations to the gut microbiome[J]. Nature Reviews Microbiology, 2023, 21(12): 772 − 788. doi: 10.1038/s41579-023-00933-y |
| [12] | MÄNTYNEN S, LAANTO E, OKSANEN H M, et al. Black box of phage-bacterium interactions: exploring alternative phage infection strategies[J]. Open Biology, 2021, 11(9): 210188. doi: 10.1098/rsob.210188 |
| [13] | ŁUSIAK-SZELACHOWSKA M, WEBER-DĄBROWSKA B, GÓRSKI A. Bacteriophages and lysins in biofilm control[J]. Virologica Sinica, 2020, 35(2): 125 − 133. doi: 10.1007/s12250-019-00192-3 |
| [14] | GOLBAN M, CHAROSTAD J, KAZEMIAN H, et al. Phage-derived endolysins against resistant Staphylococcus spp. : a review of features, antibacterial activities, and recent applications[J]. Infectious Diseases and Therapy, 2025, 14(1): 13 − 57. doi: 10.1007/s40121-024-01069-z |
| [15] | RAHMAN M U, WANG W X, SUN Q Q, et al. Endolysin, a promising solution against antimicrobial resistance[J]. Antibiotics, 2021, 10(11): 1277. doi: 10.3390/antibiotics10111277 |
| [16] | HAMPTON H G, WATSON B N J, FINERAN P C. The arms race between bacteria and their phage foes[J]. Nature, 2020, 577(7790): 327 − 336. doi: 10.1038/s41586-019-1894-8 |
| [17] | PFEIFER E, BONNIN R A, ROCHA E P C. Phage-plasmids spread antibiotic resistance genes through infection and lysogenic conversion[J]. mBio, 2022, 13(5): e01851 − 22. doi: 10.1128/mbio.01851-22 |
| [18] | KIEFFER N, HIPÓLITO A, ORTIZ-MIRAVALLES L, et al. Mobile integrons encode phage defense systems[J]. Science, 2025, 388(6747): eads0915. doi: 10.1126/science.ads0915 |
| [19] | SINGH A N, SINGH A, SINGH S K, et al. Klebsiella pneumoniae infections and phage therapy[J]. Indian Journal of Medical Microbiology, 2024, 52: 100736. doi: 10.1016/j.ijmmb.2024.100736 |
| [20] | MÜLLER S, WOLF A J, ILIEV I D, et al. Poorly cross-linked peptidoglycan in MRSA due to mecA induction activates the inflammasome and exacerbates immunopathology[J]. Cell Host & Microbe, 2015, 18(5): 604 − 612. doi: 10.1016/j.chom.2015.10.011 |
| [21] | ABDELRAHMAN F, GANGAKHEDKAR R, NAIR G, et al. Pseudomonas phage ZCPS1 endolysin as a potential therapeutic agent[J]. Viruses, 2023, 15(2): 520. doi: 10.3390/v15020520 |
| [22] | VÁZQUEZ R, GARCÍA E, GARCÍA P. Sequence-function relationships in phage-encoded bacterial cell wall lytic enzymes and their implications for phage-derived product design[J]. Journal of Virology, 2021, 95(14): e00321 − 21. |
| [23] | SCHMELCHER M, DONOVAN D M, LOESSNER M J. Bacteriophage endolysins as novel antimicrobials[J]. Future Microbiology, 2012, 7(10): 1147 − 1171. doi: 10.2217/fmb.12.97 |
| [24] | DAMS D, BRIERS Y. Enzybiotics: enzyme-based antibacterials as therapeutics[J]. Advances in Experimental Medicine and Biology, 2019, 1148: 233 − 253. doi: 10.1007/978-981-13-7709-9_11 |
| [25] | QIAO S, LUO Q S, ZHAO Y, et al. Structural basis for lipopolysaccharide insertion in the bacterial outer membrane[J]. Nature, 2014, 511(7507): 108 − 111. doi: 10.1038/nature13484 |
| [26] | CHANG Y. Bacteriophage-derived endolysins applied as potent biocontrol agents to enhance food safety[J]. Microorganisms, 2020, 8(5): 724. doi: 10.3390/microorganisms8050724 |
| [27] | 喻鑫婷. 金黄色葡萄球菌噬菌体裂解酶和穿孔素的克隆表达及抗菌活性研究[D]. 安徽: 安徽医科大学, 2022. doi: 10.26921/d.cnki.ganyu.2022.000642 |
| [28] | PRITCHARD D G, DONG S L, KIRK M C, et al. LambdaSa1 and LambdaSa2 prophage lysins of Streptococcus agalactiae[J]. Applied and Environmental Microbiology, 2007, 73(22): 7150 − 7154. doi: 10.1128/AEM.01783-07 |
| [29] | 滕铁山. 分枝杆菌噬菌体LiyA的分离、序列测定和基因组结构以及比较基因组分析及其gp29/gp30编码产物的裂解酶活性研究[D]. 重庆: 西南大学, 2012. |
| [30] | WANG Z J, LIU X, SHI Z X, et al. A novel lysin Ply1228 provides efficient protection against Streptococcus suis type 2 infection in a murine bacteremia model[J]. Veterinary Microbiology, 2022, 268: 109425. doi: 10.1016/j.vetmic.2022.109425 |
| [31] | 袭恒豫. 绿色气球菌噬菌体裂解酶AVPL的生物学特性及其抗菌作用机制[D]. 吉林: 吉林大学, 2024. doi: 10.27162/d.cnki.gjlin.2024.000769 |
| [32] | ROACH D R, DONOVAN D M. Antimicrobial bacteriophage-derived proteins and therapeutic applications[J]. Bacteriophage, 2015, 5(3): e1062590. doi: 10.1080/21597081.2015.1062590 |
| [33] | 杨航, 余军平, 危宏平. 裂解酶治疗的研究进展与应用前景[J]. 微生物学通报, 2015, 42(1): 178 − 184. doi: 10.13344/j.microbiol.china.140623 |
| [34] | PASTAGIA M, SCHUCH R, FISCHETTI V A, et al. Lysins: the arrival of pathogen-directed anti-infectives[J]. Journal of Medical Microbiology, 2013, 62(Pt 10): 1506-1516. doi: 10.1099/jmm.0.061028-0 |
| [35] | YOUNG R. Phage lysis: three steps, three choices, one outcome[J]. Journal of Microbiology, 2014, 52(3): 243 − 258. doi: 10.1007/s12275-014-4087-z |
| [36] | GARDE S, CHODISETTI P K, REDDY M. Peptidoglycan: structure, synthesis, and regulation[J]. EcoSal Plus, 2021, 9(2): eESP − 0010-2020. doi: 10.1128/ECOSALPLUS.ESP-0010-2020 |
| [37] | VOLLMER W, BLANOT D, DE PEDRO M A. Peptidoglycan structure and architecture[J]. FEMS Microbiology Reviews, 2008, 32(2): 149 − 167. doi: 10.1111/j.1574-6976.2007.00094.x |
| [38] | LOESSNER M J. Bacteriophage endolysins—current state of research and applications[J]. Current Opinion in Microbiology, 2005, 8(4): 480 − 487. doi: 10.1016/j.mib.2005.06.002 |
| [39] | BROENDUM S S, BUCKLE A M, MCGOWAN S. Catalytic diversity and cell wall binding repeats in the phage-encoded endolysins[J]. Molecular Microbiology, 2018, 110(6): 879 − 896. doi: 10.1111/mmi.14134 |
| [40] | ABDELRAHMAN F, EASWARAN M, DARAMOLA O I, et al. Phage-encoded endolysins[J]. Antibiotics, 2021, 10(2): 124. doi: 10.3390/antibiotics10020124 |
| [41] | CHENG X, ZHANG X, PFLUGRATH J W, et al. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(9): 4034 − 4038. doi: 10.1073/pnas.91.9.4034 |
| [42] | YANG S P, MENG X P, ZHEN Y Q, et al. Strategies and mechanisms targeting Enterococcus faecalis biofilms associated with endodontic infections: a comprehensive review[J]. Frontiers in Cellular and Infection Microbiology, 2024, 14: 1433313. doi: 10.3389/fcimb.2024.1433313 |
| [43] | 刘宝玲, 陈天宝, 柳旭辉, 等. 新型抗生物膜药物研究进展[J]. 动物医学进展, 2023, 44(11): 84 − 88. doi: 10.16437/j.cnki.1007-5038.2023.11.015 |
| [44] | WU J A, KUSUMA C, MOND J J, et al. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(11): 3407 − 3414. doi: 10.1128/AAC.47.11.3407-3414.2003 |
| [45] | GUTIÉRREZ D, RUAS-MADIEDO P, MARTÍNEZ B, et al. Effective removal of staphylococcal biofilms by the endolysin LysH5[J]. PLoS One, 2014, 9(9): e107307. doi: 10.1371/journal.pone.0107307 |
| [46] | LENDEL A M, ANTONOVA N P, GRIGORIEV I V, et al. Biofilm-disrupting effects of phage endolysins LysAm24, LysAp22, LysECD7, and LysSi3: breakdown the matrix[J]. World Journal of Microbiology and Biotechnology, 2024, 40(6): 186. doi: 10.1007/s11274-024-03999-9 |
| [47] | GUTIÉRREZ D, BRIERS Y. Lysins breaking down the walls of Gram-negative bacteria, no longer a no-go[J]. Current Opinion in Biotechnology, 2021, 68: 15 − 22. doi: 10.1016/j.copbio.2020.08.014 |
| [48] | 刘菲, 黄柯, 郑积敏. 革兰氏阴性菌细胞表面多糖的应用潜力[J]. 化学教育(中英文), 2024, 45(6): 1 − 10. doi: 10.13884/j.1003-3807hxjy.2023020111 |
| [49] | 周巾煜, 李倩倩, 黄纯翠, 等. 细菌脂多糖及其寡糖链结构分析技术研究进展[J]. 生物化学与生物物理进展, 2017, 44(1): 49 − 57. doi: 10.16476/j.pibb.2016.0306 |
| [50] | 莫婷, 刘马峰, 程安春. 革兰氏阴性菌脂多糖运输系统的构成及作用机制[J]. 微生物学报, 2018, 58(9): 1521 − 1530. doi: 10.13343/j.cnki.wsxb.20170517 |
| [51] | BRIERS Y, LAVIGNE R. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria[J]. Future Microbiology, 2015, 10(3): 377 − 390. doi: 10.2217/fmb.15.8 |
| [52] | RUIZ N, KAHNE D, SILHAVY T J. Transport of lipopolysaccharide across the cell envelope: the long road of discovery[J]. Nature Reviews Microbiology, 2009, 7(9): 677 − 683. doi: 10.1038/nrmicro2184 |
| [53] | BLASCO L, AMBROA A, TRASTOY R, et al. In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens[J]. Scientific Reports, 2020, 10(1): 7163. doi: 10.1038/s41598-020-64145-7 |
| [54] | KIM J, WANG J, AHN J. Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella typhimurium[J]. Biofouling, 2023, 39(7): 763 − 774. doi: 10.1080/08927014.2023.2265817 |
| [55] | LOOD R, WINER B Y, PELZEK A J, et al. Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(4): 1983 − 1991. doi: 10.1128/AAC.04641-14 |
| [56] | LARPIN Y, OECHSLIN F, MOREILLON P, et al. In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria[J]. PLoS One, 2018, 13(2): e0192507. doi: 10.1371/journal.pone.0192507 |
| [57] | LOW L Y, YANG C, PEREGO M, et al. Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins[J]. Journal of Biological Chemistry, 2011, 286(39): 34391 − 34403. doi: 10.1074/jbc.M111.244160 |
| [58] | LAI M J, LIN N T, HU A R, et al. Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin(LysAB2)against both Gram-positive and Gram-negative bacteria[J]. Applied Microbiology and Biotechnology, 2011, 90(2): 529 − 539. doi: 10.1007/s00253-011-3104-y |
| [59] | BREIJYEH Z, JUBEH B, KARAMAN R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it[J]. Molecules, 2020, 25(6): 1340. doi: 10.3390/molecules25061340 |
| [60] | BRIERS Y, CORNELISSEN A, AERTSEN A, et al. Analysis of outer membrane permeability of Pseudomonas aeruginosa and bactericidal activity of endolysins KZ144 and EL188 under high hydrostatic pressure[J]. FEMS Microbiology Letters, 2008, 280(1): 113 − 119. doi: 10.1111/j.1574-6968.2007.01051.x |
| [61] | SISSON H M, FAGERLUND R D, JACKSON S A, et al. Antibacterial synergy between a phage endolysin and citric acid against the Gram-negative kiwifruit pathogen Pseudomonas syringae pv. actinidiae[J]. Applied and Environmental Microbiology, 2024, 90(3): e01846 − 23. doi: 10.1128/aem.01846-23 |
| [62] | NING H Q, CONG Y, LIN H, et al. Development of cationic peptide chimeric lysins based on phage lysin Lysqdvp001 and their antibacterial effects against Vibrio parahaemolyticus: a preliminary study[J]. International Journal of Food Microbiology, 2021, 358: 109396. doi: 10.1016/j.ijfoodmicro.2021.109396 |
| [63] | MA Q, GUO Z M, GAO C C, et al. Enhancement of the direct antimicrobial activity of Lysep3 against Escherichia coli by inserting cationic peptides into its C terminus[J]. Antonie van Leeuwenhoek, 2017, 110(3): 347 − 355. doi: 10.1007/s10482-016-0806-2 |
| [64] | MANCOŠ M, ŠRAMKOVÁ Z, PETERKOVÁ D, et al. Functional expression and purification of tailor-made chimeric endolysin with the broad antibacterial spectrum[J]. Biologia, 2020, 75(11): 2031 − 2043. doi: 10.2478/s11756-020-00508-9 |
| [65] | HONG H W, KIM Y D, JANG J, et al. Combination effect of engineered endolysin EC340 with antibiotics[J]. Frontiers in Microbiology, 2022, 13: 821936. doi: 10.3389/fmicb.2022.821936 |
| [66] | WANG Y J, XUE P, CAO M F, et al. Directed evolution: methodologies and applications[J]. Chemical Reviews, 2021, 121(20): 12384 − 12444. doi: 10.1021/acs.chemrev.1c00260 |
| [67] | 陈涛, 赖锦涛, 胡美林, 等. 蛋白质优化设计与从头合成引领的疫苗研发革命[J/OL]. 合成生物学, 2025[2025-09-24]. https://link.cnki.net/urlid/10.1687.Q.20250820.1317.002. |
| [68] | 张颜伊, 汪路杰, 程峰, 等. 酶定向进化技术在单细胞蛋白生产中的研究进展[J/OL]. 科学通报, 2025[2025-09-24]. https://link.cnki.net/urlid/11.1784.N.20250827.1008.004. |
| [69] | CHANG Y, LI Q B, ZHANG S H, et al. Identification and molecular modification of Staphylococcus aureus bacteriophage lysin LysDZ25[J]. ACS Infectious Diseases, 2023, 9(3): 497 − 506. doi: 10.1021/acsinfecdis.2c00493 |
| [70] | KUMAR S, DUGGINENI V K, SINGHANIA V, et al. Unravelling and quantifying the biophysical– biochemical descriptors governing protein thermostability by machine learning[J]. Advanced Theory and Simulations, 2023, 6(3): 2200703. doi: 10.1002/adts.202200703 |
| [71] | 石甜, 史聪聪, 衡冰冰, 等. 副溶血弧菌噬菌体裂解酶LysF23s2和LysH256D1的表达及活性分析[J]. 武汉轻工大学学报, 2024, 43(5): 10 − 17. |
| [72] | LOESSNER M J, KRAMER K, EBEL F, et al. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates[J]. Molecular Microbiology, 2002, 44(2): 335 − 349. doi: 10.1046/j.1365-2958.2002.02889.x |
| [73] | 张时雨. 裂解酶Ply0643及其嵌合体的体内外抑菌活性以及菲啶酮类化合物抑菌活性的分析[D]. 南京: 南京农业大学, 2021. doi: 10.27244/d.cnki.gnjnu.2021.001210 |
| [74] | SASS P, BIERBAUM G. Lytic activity of recombinant bacteriophage φ11 and φ12 endolysins on whole cells and biofilms of Staphylococcus aureus[J]. Applied and Environmental Microbiology, 2007, 73(1): 347 − 352. doi: 10.1128/AEM.01616-06 |
| [75] | LOW L Y, YANG C, PEREGO M, et al. Structure and lytic activity of a Bacillus anthracis prophage endolysin[J]. Journal of Biological Chemistry, 2005, 280(42): 35433 − 35439. doi: 10.1074/jbc.M502723200 |
| [76] | MAYER M J, GAREFALAKI V, SPOERL R, et al. Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range[J]. Journal of Bacteriology, 2011, 193(19): 5477 − 5486. doi: 10.1128/JB.00439-11 |
| [77] | 黄春正. 裂解酶LysLF1的生物学特性及其抗链球菌的效果评价[D]. 吉林: 吉林大学, 2023. doi: 10.27162/d.cnki.gjlin.2023.004564 |
| [78] | HORGAN M, O'FLYNN G, GARRY J, et al. Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci[J]. Applied and Environmental Microbiology, 2009, 75(3): 872 − 874. doi: 10.1128/AEM.01831-08 |
| [79] | YANG H, LUO D H, ETOBAYEVA I, et al. Linker editing of pneumococcal lysin ClyJ conveys improved bactericidal activity[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(2): e01610 − e01619. doi: 10.1128/AAC.01610-19 |
| [80] | YANG H, YU J P, WEI H P. Engineered bacteriophage lysins as novel anti-infectives[J]. Frontiers in Microbiology, 2014, 5: 542. doi: 10.3389/fmicb.2014.00542 |
| [81] | DONG Q H, WANG J, YANG H, et al. Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci[J]. Microbial Biotechnology, 2015, 8(2): 210 − 220. doi: 10.1111/1751-7915.12166 |
| [82] | DUAN X C, LI X X, LI X M, et al. Exploiting broad-spectrum chimeric lysin to cooperate with mupirocin against Staphylococcus aureus-induced skin infections and delay the development of mupirocin resistance[J]. Microbiology Spectrum, 2023, 11(3): e05050 − 22. doi: 10.1128/spectrum.05050-22 |
| [83] | ROEHRIG C, HUEMER M, LORGÉ D, et al. MEndoB, a chimeric lysin featuring a novel domain architecture and superior activity for the treatment of staphylococcal infections[J]. mBio, 2024, 15(2): e02540 − 23. doi: 10.1128/mbio.02540-23 |
| [84] | LI X H, WANG S J, NYARUABA R, et al. A highly active chimeric lysin with a calcium-enhanced bactericidal activity against Staphylococcus aureus in vitro and in vivo[J]. Antibiotics, 2021, 10(4): 461. doi: 10.3390/antibiotics10040461 |
| [85] | BECKER S C, ROACH D R, CHAUHAN V S, et al. Triple-acting lytic enzyme treatment of drug-resistant and intracellular Staphylococcus aureus[J]. Scientific Reports, 2016, 6: 25063. doi: 10.1038/srep25063 |
| [86] | LETRADO P, CORSINI B, DÍEZ-MARTÍNEZ R, et al. Bactericidal synergism between antibiotics and phage endolysin Cpl-711 to kill multidrug-resistant pneumococcus[J]. Future Microbiology, 2018, 13(11): 1215 − 1223. doi: 10.2217/fmb-2018-0077 |