[1] |
ZHANG W L, BAI T T, JAMIL A, et al. The interaction between fusarium oxysporum f. sp. cubense tropical race 4 and soil properties in banana plantations in Southwest China[J]. Plant and Soil, 2024, 505(1/2): 779 − 793. doi: 10.1007/s11104-024-06709-4 |
[2] |
黄英兰, 周维, 陈家慧, 等. T系列香蕉抗枯萎病品系在广西的农艺性状及产量初步比较[J]. 中国南方果树, 2024, 53(6): 138 − 142. doi: 10.13938/j.issn.1007-1431.20230543 |
[3] |
辛侃, 赵娜, 邓小垦, 等. 香蕉-水稻轮作联合添加有机物料防控香蕉枯萎病研究[J]. 植物保护, 2014, 40(6): 36 − 41. doi: 10.3969/j.issn.0529-1542.2014.06.007 |
[4] |
吴元立, 杨乔松, 李春雨, 等. 香蕉-尖孢镰刀菌互作机理及抗病育种研究进展[J]. 广东农业科学, 2020, 47(11): 32 − 41. doi: 10.16768/j.issn.1004-874X.2020.11.004 |
[5] |
张妙宜, 周登博, 起登凤, 等. 香蕉枯萎病综合防控研究进展[J]. 中国科学: 生命科学, 2024, 54(10): 1843 − 1852. doi: 10.1360/SSV-2023-0283 |
[6] |
甘林, 代玉立, 刘晓菲, 等. 香蕉枯萎病高效拮抗土著细菌的筛选及其防效[J]. 西北农林科技大学学报(自然科学版), 2024, 52(6): 95 − 105. doi: 10.13207/j.cnki.jnwafu.2024.06.010 |
[7] |
何章飞, 李朝生, 于琴芝, 等. 不同作物与香蕉轮作综合防控枯萎病关键技术[J]. 广西农学报, 2022, 37(6): 21 − 26. doi: 10.3969/j.issn.1003-4374.2022.06.006 |
[8] |
RAMAKRISHNAN S, SREENIVAS S S. Biological control of soil-borne fungal and root-knot nematode disease complex in FCV tobacco nursery[J]. Journal of Biological Control, 2015, 29(4): 203 − 206. doi: 10.18641/jbc/29/4/86887 |
[9] |
漆艳香, 谢艺贤, 彭军, 等. 香蕉根际微生态及其与枯萎病防治之间的关系[J]. 生物技术通报, 2024, 40(6): 57 − 67. doi: 10.13560/j.cnki.biotech.bull.1985.2023-1222 |
[10] |
姚遐俊, 谢津, 祁艳华, 等. 一株防治香蕉枯萎病的短密木霉筛选及代谢物木霉素作用评价[J]. 生物工程学报, 2024, 40(1): 211 − 225. doi: 10.13345/j.cjb.230170 |
[11] |
徐杰, 农婉晴, 张耀芳, 等. Bacillus rugosus对香蕉枯萎病的防治及促生效果[J/OL]. 分子植物育种, 2023: 1−19[2025-02-27]. https://link.cnki.net/urlid/46.1068.s.20231025.1308.006. |
[12] |
黄穗萍, 李其利, 韦绍龙, 等. 米修链霉菌TF78对香蕉枯萎病的田间防效及根际土壤微生物的影响[J]. 微生物学通报, 2022, 49(9): 3693 − 3708. doi: 10.13344/j.microbiol.china.220095 |
[13] |
宋秀丽, 赵崇钊, 卓愉林, 等. 绿针假单胞菌桔黄亚种在香蕉枯萎病防治中的应用[J]. 农业资源与环境学报, 2025, 42(1): 206 − 217. doi: 10.13254/j.jare.2023.0339 |
[14] |
朱杰, 郑利乐, 钟鸣鸾, 等. 洋葱伯克霍尔德菌GD1-1的分离鉴定及对香蕉枯萎病的生防潜力[J]. 华南农业大学学报, 2025, 46(1): 72 − 80. doi: 10.7671/j.issn.1001-411X.202404043 |
[15] |
CHEN Y F, LI X J, ZHOU D B, et al. Streptomyces-secreted fluvirucin B6 as a potential bio-fungicide for managing banana Fusarium wilt and mycotoxins and modulating the soil microbial community structure[J]. Journal of Agricultural and Food Chemistry, 2024, 72(32): 17890 − 17902. doi: 10.1021/acs.jafc.4c04077 |
[16] |
SI SAID Z B O, HADDADI-GUEMGHAR H, BOULEKBACHE-MAKHLOUF L, et al. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits[J]. Industrial Crops and Products, 2016, 89: 167 − 175. doi: 10.1016/j.indcrop.2016.05.018 |
[17] |
THOMPSON C C, CHIMETTO L, EDWARDS R A, et al. Microbial genomic taxonomy[J]. BMC Genomics, 2013, 14: 913. doi: 10.1186/1471-2164-14-913 |
[18] |
PARK H J, LEE J Y, HWANG I S, et al. Isolation and antifungal and antioomycete activities of Staurosporine from Streptomyces roseoflavus strain LS-A24[J]. Journal of Agricultural and Food Chemistry, 2006, 54(8): 3041 − 3046. doi: 10.1021/jf0532617 |
[19] |
OMURA S, IWAI Y, HIRANO A, et al. A new alkaloid AM-2282 of Streptomyces origin taxonomy, fermentation, isolation and preliminary characterization[J]. The Journal of Antibiotics, 1977, 30(4): 275 − 282. doi: 10.7164/antibiotics.30.275 |
[20] |
ZOU N X, ZHOU D B, CHEN Y L, et al. A novel antifungal actinomycete Streptomyces sp. strain H3-2 effectively controls banana Fusarium wilt[J]. Frontiers in Microbiology, 2021, 12: 706647. doi: 10.3389/fmicb.2021.706647 |
[21] |
洪葵. 红树林放线菌及其天然产物研究进展[J]. 微生物学报, 2013, 53(11): 1131 − 1141. |
[22] |
黄媛林, 潘信利, 陆璐, 等. 一株红树林链霉菌所产抑菌活性化合物的分离及其生物合成基因簇的研究[J]. 中国抗生素杂志, 2021, 46(12): 1090 − 1101. doi: 10.3969/j.issn.1001-8689.2021.12.004 |
[23] |
张骏梁, 史蔷, 吴昊, 等. 一株红树林来源放线菌的抗菌活性物质[J]. 深圳大学学报(理工版), 2024, 41(3): 358 − 366. doi: 10.3724/SP.J.1249.2024.03358 |
[24] |
SUI J L, XU X X, QU Z, et al. Streptomyces sanyensis sp. nov. , isolated from mangrove sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(7): 1632-1637. doi: 10.1099/ijs.0.023515-0 |
[25] |
FU P, YANG C L, WANG Y, et al. Streptocarbazoles A and B, two novel indolocarbazoles from the marine-derived actinomycete strain Streptomyces sp. FMA[J]. Organic Letters, 2012, 14(9): 2422 − 2425. doi: 10.1021/ol3008638 |
[26] |
LI T, DU Y Y, CUI Q, et al. Cloning, characterization and heterologous expression of the indolocarbazole biosynthetic gene cluster from marine-derived Streptomyces sanyensis FMA[J]. Marine Drugs, 2013, 11(2): 466 − 488. doi: 10.3390/md11020466 |
[27] |
CARTUCHE L, REYES-BATLLE M, SIFAOUI I, et al. Antiamoebic activities of indolocarbazole metabolites isolated from Streptomyces sanyensis cultures[J]. Marine Drugs, 2019, 17(10): 588. doi: 10.3390/md17100588 |
[28] |
CHEN Y F, WEI Y Z, CAI B Y, et al. Discovery of Niphimycin C from Streptomyces yongxingensis sp. nov. as a promising agrochemical fungicide for controlling banana Fusarium wilt by destroying the mitochondrial structure and function[J]. Journal of Agricultural and Food Chemistry, 2022, 70(40): 12784 − 12795. doi: 10.1021/acs.jafc.2c02810 |
[29] |
REN Z, LI Q, SHEN Y W, et al. Intrinsic relative preference profile of pan-kinase inhibitor drug staurosporine towards the clinically occurring gatekeeper mutations in Protein Tyrosine Kinases[J]. Computational Biology and Chemistry, 2021, 94: 107562. doi: 10.1016/j.compbiolchem.2021.107562 |