[1] |
LESSER M P J S N. Coral bleaching: causes and mechanisms[M]. Berlin: Springer Netherlands, 2011. |
[2] |
STAMBLER N. Coral symbiosis under stress[M]. Berlin: Springer Netherlands, 2010. |
[3] |
HUGHES T P, BAIRD A H, BELLWOOD D R, et al. Climate change, human impacts, and the resilience of coral reefs [J]. Science, 2003, 301(5635): 929 − 933. doi: 10.1126/science.1085046 |
[4] |
WICKS L C, HILL R, DAVY S K. The influence of irradiance on tolerance to high and low temperature stress exhibited by Symbiodinium in the coral, Pocillopora damicornis, from the high-latitude reef of Lord Howe Island [J]. Limnology And Oceanography, 2010, 55(6): 2476 − 2486. doi: 10.4319/lo.2010.55.6.2476 |
[5] |
LITTMAN R A, OPPEN M, WILLIS B L. Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef) [J]. Journal of Experimental Marine Biology and Ecology, 2008, 364(1): 48 − 53. doi: 10.1016/j.jembe.2008.06.034 |
[6] |
OZDALGIC B, USTUN M, DABBAGH S R, et al. Microfluidics for microalgal biotechnology [J]. Biotechnol Bioeng, 2021, 118(4): 1545 − 1563. doi: 10.1002/bit.27671 |
[7] |
ANTONACCI A, SCOGNAMIGLIO V. Biotechnological advances in the design of algae-based biosensors [J]. Trends Biotechnol, 2020, 38(3): 334 − 347. doi: 10.1016/j.tibtech.2019.10.005 |
[8] |
WANG J, WANG G, CHEN M, et al. An integrated microfluidic chip for treatment and detection of microalgae cells [J]. Algal Research, 2019, 42: 101593. doi: 10.1016/j.algal.2019.101593 |
[9] |
WANG Y, WANG J, ZHOU C, et al. A Microfluidic prototype system towards microalgae cell separation, treatment and viability characterization [J]. Sensors (Basel), 2019, 19(22): 4940. doi: 10.3390/s19224940 |
[10] |
WANG Y, WANG J, WU X, et al. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip [J]. Electrophoresis, 2019, 40(6): 969 − 978. doi: 10.1002/elps.201800302 |
[11] |
YUAN Q, MIRZAJANI H, EVANS B, et al. A disposable bulk-acoustic-wave microalga trapping device for real-time water monitoring [J]. Sensors And Actuators B-Chemical, 2020, 304: 127388. doi: 10.1016/j.snb.2019.127388 |
[12] |
RAYMOND S J, COLLINS D J, O'RORKE R, et al. A deep learning approach for designed diffraction-based acoustic patterning in microchannels [J]. Sci Rep, 2020, 10: 8745. doi: 10.1038/s41598-020-65453-8 |
[13] |
STOECKLEIN D, LORE K G, DAVIES M, et al. Deep learning for flow sculpting: insights into efficient learning using scientific simulation data [J]. Sci Rep, 2017, 7: 46368. doi: 10.1038/srep46368 |
[14] |
FEIZI A, ZHANG Y, GREENBAUM A, et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning [J]. Lab Chip, 2016, 16(22): 4350 − 4358. doi: 10.1039/C6LC00976J |
[15] |
ISOZAKI A, HARMON J, ZHOU Y, et al. AI on a chip [J]. Lab Chip, 2020, 20(17): 3074 − 3090. doi: 10.1039/D0LC00521E |
[16] |
NITTA N, SUGIMURA T, ISOZAKI A, et al. Intelligent image-activated cell sorting [J]. Cell, 2018, 175(1): 266 − 276. doi: 10.1016/j.cell.2018.08.028 |
[17] |
KIM K, KIM S, JEON J S. Visual estimation of bacterial growth level in microfluidic culture systems [J]. Sensors (Basel), 2018, 18(2): 447. doi: 10.3390/s18020447 |
[18] |
ZHANG Z, CHEN L, WANG Y, et al. Label-free estimation of therapeutic efficacy on 3D cancer spheres using convolutional neural network image analysis [J]. Anal Chem, 2019, 91(21): 14093 − 14100. doi: 10.1021/acs.analchem.9b03896 |
[19] |
MATSUMOTO Y, SAKAKIHARA S, GRUSHNIKOV A, et al. A microfluidic channel method for rapid drug-susceptibility testing of Pseudomonas aeruginosa [J]. PLoS One, 2016, 11(2): e0148797. doi: 10.1371/journal.pone.0148797 |
[20] |
FUKUSHIMA K. Training multi-layered neural network neocognitron [J]. Neural Netw, 2013, 40: 18 − 31. doi: 10.1016/j.neunet.2013.01.001 |
[21] |
LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436 − 444. doi: 10.1038/nature14539 |
[22] |
HAASEN D, SCHOPFER U, ANTCZAK C, et al. How phenotypic screening influenced drug discovery: lessons from five years of practice [J]. Assay Drug Dev Technol, 2017, 15(6): 239 − 246. doi: 10.1089/adt.2017.796 |
[23] |
MATTIAZZI USAJ M, STYLES E B, VERSTER A J, et al. High-content screening for quantitative cell biology [J]. Trends Cell Biol, 2016, 26(8): 598 − 611. doi: 10.1016/j.tcb.2016.03.008 |
[24] |
XU M, HARMON J, YUAN D, et al. Morphological indicator for directed evolution of Euglena gracilis with a high heavy metal removal efficiency [J]. Environ Sci Technol, 2021, 55(12): 7880 − 7889. doi: 10.1021/acs.est.0c05278 |
[25] |
GUO B, LEI C, KOBAYASHI H, et al. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy [J]. Cytometry A, 2017, 91(5): 494 − 502. doi: 10.1002/cyto.a.23084 |
[26] |
CHEN C L, MAHJOUBFAR A, TAI L C, et al. Deep learning in label-free cell classification [J]. Sci Rep, 2016, 6: 21471. doi: 10.1038/srep21471 |
[27] |
XIONG B, HONG T Q, SCHELLHORN H, et al. Dual-modality imaging microfluidic cytometer for onsite detection of phytoplankton [J]. Photonics, 2021, 8(10): 435. doi: 10.3390/photonics8100435 |
[28] |
WANG J, YU X, WANG Y, et al. Detection of viability of micro-algae cells by optofluidic hologram pattern [J]. Biomicrofluidics, 2018, 12(2): 024111. doi: 10.1063/1.5021179 |
[29] |
GRCS Z, TAMAMITSU M, BIANCO V, et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples [J]. Light Sci Appl, 2018, 7: 66. doi: 10.1038/s41377-018-0067-0 |
[30] |
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection [J]. arXiv e-prints, 2020, arXiv: 2004.10934. |
[31] |
GIRAULT M, KIM H, ARAKAWA H, et al. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution [J]. Sci Rep, 2017, 7: 40072. doi: 10.1038/srep40072 |
[32] |
HEO Y J, LEE D, KANG J, et al. Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip [J]. Sci Rep, 2017, 7: 11651. doi: 10.1038/s41598-017-11534-0 |