[1] |
陈成斌, 赖群珍. 我国特种稻研究概述[J]. 广西农业科学, 1993(2): 58 − 61. |
[2] |
叶凡, 杨小波, 党金玲, 等. 中国山栏稻的研究进展[J]. 作物杂志, 2008(2): 12 − 15. doi: 10.3969/j.issn.1001-7283.2008.02.004 |
[3] |
杨国峰, 黄春燕, 王波, 等. 海南山栏稻稻米品质分析及优异资源筛选[J]. 植物遗传资源学报, 2017, 18(1): 40 − 45. |
[4] |
郑成木, 黄东益, 陈辉. 海南山栏稻种质类缘与杂交育种利用的研究[J]. 热带作物学报, 1998(2): 74 − 81. |
[5] |
LUO J. Metabolite-based genome-wide association studies in plants [J]. Current Opinion in Plant Biology, 2015, 24: 31 − 8. doi: 10.1016/j.pbi.2015.01.006 |
[6] |
LI Y, CHEN Y, ZHOU L, et al. MicroTom metabolic network: Rewiring tomato metabolic regulatory network throughout the growth cycle [J]. Molecular Plant, 2020, 13(8): 1203 − 1218. doi: 10.1016/j.molp.2020.06.005 |
[7] |
CHEN W, WANG W, PENG M, et al. Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals [J]. Nature Communications, 2016, 7(1): 223 − 230. |
[8] |
ZHU G, WANG S, HUANG Z, et al. Rewiring of the fruit metabolome in tomato breeding [J]. Cell, 2018, 172(1/2): 249 − 261. |
[9] |
WANG S, TU H, WANG J, et al. Spatio-temporal distribution and natural variation of metabolites in citrus fruits [J]. Food Chemistry, 2016, 199: 8 − 17. doi: 10.1016/j.foodchem.2015.11.113 |
[10] |
CHEN W, GONG L, GUO Z, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics [J]. Molecular Plant, 2013, 6(6): 1769 − 1780. doi: 10.1093/mp/sst080 |
[11] |
蒋家焕, 王玲, 叶新福, 等. 特种稻黑米遗传研究进展[J]. 福建稻麦科技, 1999(1): 5 − 8. |
[12] |
ZHU Q, YU S, ZENG D, et al. Development of "Purple Endosperm Rice" by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system [J]. Molecular Plant, 2017, 10(7): 918 − 929. doi: 10.1016/j.molp.2017.05.008 |
[13] |
蔡能, 王晓明, 曾慧杰, 等. 3个金银花新品种逆境条件下脯氨酸含量初步分析[J]. 中南林业科技大学学报, 2012, 32(5): 161 − 165. |
[14] |
HUANG X, KURATA N, WEI X, et al. A map of rice genome variation reveals the origin of cultivated rice [J]. Nature, 2012, 490(7421): 497 − 501. doi: 10.1038/nature11532 |
[15] |
DONG X, GAO Y, CHEN W, et al. Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice [J]. Molecular Plant, 2015, 8(1): 111 − 121. doi: 10.1016/j.molp.2014.11.003 |
[16] |
袁楠楠, 魏鑫, 薛达元, 等. 海南黎族聚居区山栏稻的起源演化研究[J]. 植物遗传资源学报, 2013, 14(2): 202 − 207. doi: 10.3969/j.issn.1672-1810.2013.02.002 |
[17] |
吴丹, 吴川德, 何美丹, 等. 水作和旱作对山栏稻生长的影响[J]. 热带生物学报, 2017, 8(3): 318 − 323. |
[18] |
刘志超, 黄孟雨, 翟楠鑫, 等. 水旱两种栽培模式下海南山栏稻对白叶枯病抗性鉴定与评价[J]. 植物保护, 2021(1): 1 − 11. |
[19] |
ZHANG J, LUO W, ZHAO Y, et al. Comparative metabolomic analysis reveals a reactive oxygen species‐dominated dynamic model underlying chilling environment adaptation and tolerance in rice [J]. New Phytologist, 2016, 211(4): 1295 − 1310. doi: 10.1111/nph.14011 |
[20] |
DONG N, SUN Y, GUO T, et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice [J]. Nature Communications, 2020, 11(1): 2629. doi: 10.1038/s41467-020-16403-5 |
[21] |
LAM P, LUI A, YAMAMURA M, et al. Recruitment of specific flavonoid B‐ring hydroxylases for two independent biosynthesis pathways of flavone‐derived metabolites in grasses [J]. New Phytologist, 2019, 223(1): 204 − 219. doi: 10.1111/nph.15795 |
[22] |
CHEN H, XIONG L. Pyridoxine is required for post‐embryonic root development and tolerance to osmotic and oxidative stresses [J]. Plant Journal, 2005, 44(3): 396 − 408. doi: 10.1111/j.1365-313X.2005.02538.x |
[23] |
GONG Z, XIONG L, SHI H, et al. Plant abiotic stress response and nutrient use efficiency [J]. Science China. Life Sciences, 2020, 63(5): 635 − 674. doi: 10.1007/s11427-020-1683-x |