[1] 陈成斌, 赖群珍. 我国特种稻研究概述[J]. 广西农业科学, 1993(2): 58 − 61.
[2] 叶凡, 杨小波, 党金玲, 等. 中国山栏稻的研究进展[J]. 作物杂志, 2008(2): 12 − 15. doi:  10.3969/j.issn.1001-7283.2008.02.004
[3] 杨国峰, 黄春燕, 王波, 等. 海南山栏稻稻米品质分析及优异资源筛选[J]. 植物遗传资源学报, 2017, 18(1): 40 − 45.
[4] 郑成木, 黄东益, 陈辉. 海南山栏稻种质类缘与杂交育种利用的研究[J]. 热带作物学报, 1998(2): 74 − 81.
[5]

LUO J. Metabolite-based genome-wide association studies in plants [J]. Current Opinion in Plant Biology, 2015, 24: 31 − 8. doi:  10.1016/j.pbi.2015.01.006
[6]

LI Y, CHEN Y, ZHOU L, et al. MicroTom metabolic network: Rewiring tomato metabolic regulatory network throughout the growth cycle [J]. Molecular Plant, 2020, 13(8): 1203 − 1218. doi:  10.1016/j.molp.2020.06.005
[7]

CHEN W, WANG W, PENG M, et al. Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals [J]. Nature Communications, 2016, 7(1): 223 − 230.
[8]

ZHU G, WANG S, HUANG Z, et al. Rewiring of the fruit metabolome in tomato breeding [J]. Cell, 2018, 172(1/2): 249 − 261.
[9]

WANG S, TU H, WANG J, et al. Spatio-temporal distribution and natural variation of metabolites in citrus fruits [J]. Food Chemistry, 2016, 199: 8 − 17. doi:  10.1016/j.foodchem.2015.11.113
[10]

CHEN W, GONG L, GUO Z, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics [J]. Molecular Plant, 2013, 6(6): 1769 − 1780. doi:  10.1093/mp/sst080
[11] 蒋家焕, 王玲, 叶新福, 等. 特种稻黑米遗传研究进展[J]. 福建稻麦科技, 1999(1): 5 − 8.
[12]

ZHU Q, YU S, ZENG D, et al. Development of "Purple Endosperm Rice" by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system [J]. Molecular Plant, 2017, 10(7): 918 − 929. doi:  10.1016/j.molp.2017.05.008
[13] 蔡能, 王晓明, 曾慧杰, 等. 3个金银花新品种逆境条件下脯氨酸含量初步分析[J]. 中南林业科技大学学报, 2012, 32(5): 161 − 165.
[14]

HUANG X, KURATA N, WEI X, et al. A map of rice genome variation reveals the origin of cultivated rice [J]. Nature, 2012, 490(7421): 497 − 501. doi:  10.1038/nature11532
[15]

DONG X, GAO Y, CHEN W, et al. Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice [J]. Molecular Plant, 2015, 8(1): 111 − 121. doi:  10.1016/j.molp.2014.11.003
[16] 袁楠楠, 魏鑫, 薛达元, 等. 海南黎族聚居区山栏稻的起源演化研究[J]. 植物遗传资源学报, 2013, 14(2): 202 − 207. doi:  10.3969/j.issn.1672-1810.2013.02.002
[17] 吴丹, 吴川德, 何美丹, 等. 水作和旱作对山栏稻生长的影响[J]. 热带生物学报, 2017, 8(3): 318 − 323.
[18] 刘志超, 黄孟雨, 翟楠鑫, 等. 水旱两种栽培模式下海南山栏稻对白叶枯病抗性鉴定与评价[J]. 植物保护, 2021(1): 1 − 11.
[19]

ZHANG J, LUO W, ZHAO Y, et al. Comparative metabolomic analysis reveals a reactive oxygen species‐dominated dynamic model underlying chilling environment adaptation and tolerance in rice [J]. New Phytologist, 2016, 211(4): 1295 − 1310. doi:  10.1111/nph.14011
[20]

DONG N, SUN Y, GUO T, et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice [J]. Nature Communications, 2020, 11(1): 2629. doi:  10.1038/s41467-020-16403-5
[21]

LAM P, LUI A, YAMAMURA M, et al. Recruitment of specific flavonoid B‐ring hydroxylases for two independent biosynthesis pathways of flavone‐derived metabolites in grasses [J]. New Phytologist, 2019, 223(1): 204 − 219. doi:  10.1111/nph.15795
[22]

CHEN H, XIONG L. Pyridoxine is required for post‐embryonic root development and tolerance to osmotic and oxidative stresses [J]. Plant Journal, 2005, 44(3): 396 − 408. doi:  10.1111/j.1365-313X.2005.02538.x
[23]

GONG Z, XIONG L, SHI H, et al. Plant abiotic stress response and nutrient use efficiency [J]. Science China. Life Sciences, 2020, 63(5): 635 − 674. doi:  10.1007/s11427-020-1683-x