[1] |
严华兵, 叶剑秋, 李开绵. 中国木薯育种研究进展[J]. 中国农学通报, 2015, 31(15): 63 − 70. doi: 10.11924/j.issn.1000-6850.casb14110159 |
[2] |
时涛, 李超萍, 王国芬, 等. 中国木薯病害研究进展与展望[J]. 热带作物学报, 2023, 44(12): 2355 − 2368. doi: 10.3969/j.issn.1000-2561.2023.12.001 |
[3] |
蔡杰, 张洁, 喻珊, 等. 施肥方式对木薯根际土壤细菌多样性与群落结构特征的影响[J]. 福建农林大学学报(自然科学版), 2022, 51(1): 15 − 20. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2022.01.002 |
[4] |
武杞蔓, 张金梅, 李玥莹, 等. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021, 37(5): 221 − 230. doi: 10.13560/j.cnki.biotech.bull.1985.2020-0846 |
[5] |
TRINH C S, LEE H, LEE W J, et al. Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa[J]. Plant Cell Reports, 2018, 37(6): 873 − 885. doi: 10.1007/s00299-018-2275-8 |
[6] |
CALVO P, ZEBELO S, MCNEAR D, et al. Plant growth-promoting rhizobacteria induce changes in Arabidopsis thaliana gene expression of nitrate and ammonium uptake genes[J]. Journal of Plant Interactions, 2019, 14(1): 224 − 231. doi: 10.1080/17429145.2019.1602887 |
[7] |
LEE S, TRỊNH C S, LEE W J, et al. Bacillus subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat[J]. Journal of Plant Research, 2020, 133(2): 231 − 244. doi: 10.1007/s10265-019-01160-4 |
[8] |
PII Y, ALDRIGHETTI A, VALENTINUZZI F, et al. Azospirillum brasilense inoculation counteracts the induction of nitrate uptake in maize plants[J]. Journal of Experimental Botany, 2019, 70(4): 1313 − 1324. doi: 10.1093/jxb/ery433 |
[9] |
CHEN Y, LI Y C, FU Y S, et al. The beneficial rhizobacterium Bacillus velezensis SQR9 regulates plant nitrogen uptake via an endogenous signaling pathway[J]. Journal of Experimental Botany, 2024, 75(11): 3388 − 3400. doi: 10.1093/jxb/erae125 |
[10] |
PÉREZ-PIQUERES A, MARTÍNEZ-ALCÁNTARA B, CANET R, et al. Plant growth-promoting microorganisms as natural stimulators of nitrogen uptake in citrus[J]. PLoS One, 2025, 20(2): e0311400. doi: 10.1371/journal.pone.0311400 |
[11] |
GAO Y, HUANG S Y, WANG Y J, et al. Analysis of the molecular and biochemical mechanisms involved in the symbiotic relationship between Arbuscular mycorrhiza fungi and Manihot esculenta Crantz[J]. Frontiers in Plant Science, 2023, 14: 1130924. doi: 10.3389/fpls.2023.1130924 |
[12] |
申光辉, 薛泉宏, 张晶, 等. 草莓根腐病拮抗真菌筛选鉴定及其防病促生作用[J]. 中国农业科学, 2012, 45(22): 4612 − 4626. doi: 10.3864/j.issn.0578-1752.2012.22.007 |
[13] |
陈杰, 郭天文, 汤琳, 等. 灰黄青霉CF3对马铃薯土传病原真菌的拮抗性及其促生作用[J]. 植物保护学报, 2013, 40(4): 301 − 308. doi: 10.13802/j.cnki.zwbhxb.2013.04.006 |
[14] |
谌昕伟, 朱柏光, 陈点华, 等. 灰黄青霉CF3对木薯病原菌的拮抗性及其促生作用[J]. 分子植物育种, 2022, 20(24): 8231 − 8236. doi: 10.13271/j.mpb.020.008231 |
[15] |
LIU X J, HU B, CHU C C. Nitrogen assimilation in plants: current status and future prospects[J]. Journal of Genetics and Genomics, 2022, 49(5): 394 − 404. doi: 10.1016/j.jgg.2021.12.006 |
[16] |
沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584 − 6591. doi: 10.5846/stxb201506051140 |
[17] |
BARGAZ A, LYAMLOULI K, CHTOUKI M, et al. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system[J]. Frontiers in Microbiology, 2018, 9: 1606. doi: 10.3389/fmicb.2018.01606 |
[18] |
MANTELIN S, DESBROSSES G, LARCHER M, et al. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp[J]. Planta, 2006, 223(3): 591 − 603. doi: 10.1007/s00425-005-0106-y |
[19] |
KECHID M, DESBROSSES G, ROKHSI W, et al. The NRT2.5 and NRT2.6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196[J]. New Phytologist, 2013, 198(2): 514 − 524. doi: 10.1111/nph.12158 |
[20] |
SCOTTI R, D’AGOSTINO N, ZACCARDELLI M. Gene expression profiling of tomato roots interacting with Pseudomonas fluorescens unravels the molecular reprogramming that occurs during the early phases of colonization[J]. Symbiosis, 2019, 78(2): 177 − 192. doi: 10.1007/s13199-019-00611-9 |
[21] |
CAMILIOS-NETO D, BONATO P, WASSEM R, et al. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes[J]. BMC Genomics, 2014, 15(1): 378. doi: 10.1186/1471-2164-15-378 |
[22] |
MURGESE P, SANTAMARIA P, LEONI B, et al. Ameliorative effects of PGPB on yield, physiological parameters, and nutrient transporter genes expression in barattiere (Cucumis melo L. )[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(2): 784 − 793. doi: 10.1007/s42729-019-00165-1 |
[23] |
SINGH B N, DWIVEDI P, SARMA B K, et al. Trichoderma asperellum T42 reprograms tobacco for enhanced nitrogen utilization efficiency and plant growth when fed with N nutrients[J]. Frontiers in Plant Science, 2018, 9: 163. doi: 10.3389/fpls.2018.00163 |
[24] |
KABIR A H, THAPA A, HASAN M R, et al. Local signal from Trichoderma afroharzianum T22 induces host transcriptome and endophytic microbiome leading to growth promotion in sorghum[J]. Journal of Experimental Botany, 2024, 75(22): 7107 − 7126. doi: 10.1093/jxb/erae340 |
[25] |
DRECHSLER N, COURTY P E, BRULÉ D, et al. Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice[J]. Mycorrhiza, 2018, 28(1): 93 − 100. doi: 10.1007/s00572-017-0802-z |
[26] |
WANG S S, CHEN A Q, XIE K, et al. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(28): 16649 − 16659. doi: 10.1073/pnas.2000926117 |
[27] |
WANG Y, XIA Y Q, YOU L L, et al. Characterization of ammonium absorption by ammonium-preferential cassava[J]. Journal of Plant Physiology, 2025, 304: 154401. doi: 10.1016/j.jplph.2024.154401 |
[28] |
ZOU L P, QI D F, SUN J B, et al. Expression of the cassava nitrate transporter NRT2.1 enables Arabidopsis low nitrate tolerance[J]. Journal of Genetics, 2019, 98(3): 74. doi: 10.1007/s12041-019-1127-9 |