| [1] | Lienert J. Habitat fragmentation effects on fitness of plant populations–a review [J]. Journal for Nature Conservation, 2004, 12(1): 53−72. https://doi.org/10.1016/j.jnc.2003.07.002 doi: 10.1016/j.jnc.2003.07.002 |
| [2] | Ellwanger C, Steger L, Pollack C, et al. Anthropogenic fragmentation increases risk of genetic decline in the threatened orchid Platanthera leucophaea [J]. Ecology and Evolution, 2022, 12(2): e8578. https://doi.org/10.1002/ece3.8578 doi: 10.1002/ece3.8578 |
| [3] | 文亚峰, 韩文军, 吴顺. 植物遗传多样性及其影响因素[J]. 中南林业科技大学学报, 2010, 30(12): 80−87. https://doi.org/10.3969/j.issn.1673-923X.2010.12.016 doi: 10.3969/j.issn.1673-923X.2010.12.016 |
| [4] | Kramer A T, Ison J L, Ashley M V, et al. The paradox of forest fragmentation genetics [J]. Conservation Biology, 2008, 22(4): 878−885. https://doi.org/10.1111/j.1523-1739.2008.00944.x doi: 10.1111/j.1523-1739.2008.00944.x |
| [5] | Wallace L E, Bowles M L. Floral and genetic divergence across environmental gradients is moderated by inter-population gene flow in Platanthera dilatata (Orchidaceae) [J]. Frontiers in Ecology and Evolution, 2023, 11: 1085938. https://doi.org/10.3389/fevo.2023.1085938 doi: 10.3389/fevo.2023.1085938 |
| [6] | Tremblay R L, Ackerman J D, Zimmerman J K, et al. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification [J]. Biological Journal of the Linnean Society, 2005, 84(1): 1−54. https://doi.org/10.1111/j.1095-8312.2004.00400.x doi: 10.1111/j.1095-8312.2004.00400.x |
| [7] | Mccormick M K, Jacquemyn H. What constrains the distribution of orchid populations? [J]. New Phytologist, 2014, 202(2): 392−400. https://doi.org/10.1111/nph.12639 doi: 10.1111/nph.12639 |
| [8] | 葛常理. 罗氏石斛遗传多样性分析及其非共生萌发[D]. 福州: 福建师范大学, 2023. https://doi.org/10.27019/d.cnki.gfjsu.2023.000672 |
| [9] | Aguilar R, Quesada M, Ashworth L, et al. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches [J]. Molecular Ecology, 2008, 17(24): 5177−5188. https://doi.org/10.1111/j.1365-294X.2008.03971.x doi: 10.1111/j.1365-294X.2008.03971.x |
| [10] | 杨蕾. 大花杓兰适生区预测、种群遗传多样性及基因流研究[D]. 北京: 北京林业大学, 2022. https://doi.org/10.26949/d.cnki.gblyu.2022.001310 |
| [11] | Lei J R, Chen Y Q, Li L M, et al. Spatiotemporal change of habitat quality in Hainan Island of China based on changes in land use [J]. Ecological Indicators, 2022, 145: 109707. https://doi.org/10.1016/j.ecolind.2022.109707 doi: 10.1016/j.ecolind.2022.109707 |
| [12] | 颜平, 黄明忠, 杨光穗, 等. 海南钻喙兰种质资源现状调查[J]. 广东农业科学, 2015, 42(5): 24−30. https://doi.org/10.16768/j.issn.1004-874x.2015.05.021 doi: 10.16768/j.issn.1004-874x.2015.05.021 |
| [13] | 陈馷嶂, 赵莹, 张哲, 等. 海南钻喙兰开花物候与繁殖特性研究[J]. 植物科学学报, 2025, 43(4): 444−453. https://doi.org/10.11913/PSJ.2095-0837.24194 doi: 10.11913/PSJ.2095-0837.24194 |
| [14] | 帖聪晓. 基于简化基因组测序RAD-seq的寒兰景观遗传学研究[D]. 南昌: 南昌大学, 2022. https://doi.org/10.27232/d.cnki.gnchu.2022.002223 |
| [15] | 刘财国. 基于SNP的福建武夷山和建瓯茶树种质资源遗传多样性分析[D]. 福州: 福建农林大学, 2023. https://doi.org/10.27018/d.cnki.gfjnu.2023.000186 |
| [16] | Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue [J]. Focus, 1990, 12(1): 13−15. |
| [17] | Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data [J]. Genetics, 2000, 155(2): 945−959. https://doi.org/10.1093/genetics/155.2.945 doi: 10.1093/genetics/155.2.945 |
| [18] | Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data: dominant markers and null alleles [J]. Molecular Ecology Notes, 2007, 7(4): 574−578. https://doi.org/10.1111/j.1471-8286.2007.01758.x doi: 10.1111/j.1471-8286.2007.01758.x |
| [19] | Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study [J]. Molecular Ecology, 2005, 14(8): 2611−2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x doi: 10.1111/j.1365-294X.2005.02553.x |
| [20] | Earl D A, Vonholdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method [J]. Conservation Genetics Resources, 2012, 4(2): 359−361. https://doi.org/10.1007/s12686-011-9548-7 doi: 10.1007/s12686-011-9548-7 |
| [21] | Kamvar Z N, Tabima J F, Grünwald N J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction [J]. PeerJ, 2014, 2: e281. https://doi.org/10.7717/peerj.281 doi: 10.7717/peerj.281 |
| [22] | De Meeûs T. Revisiting FIS, FST, Wahlund effects, and null alleles [J]. Journal of Heredity, 2018, 109(4): 446−456. https://doi.org/10.1093/jhered/esx106 doi: 10.1093/jhered/esx106 |
| [23] | Frankham R. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow [J]. Molecular Ecology, 2015, 24(11): 2610−2618. https://doi.org/10.1111/mec.13139 doi: 10.1111/mec.13139 |
| [24] | Hedrick P W. Recent developments in conservation genetics [J]. Forest Ecology and Management, 2004, 197(1/3): 3−19. https://doi.org/10.1016/j.foreco.2004.05.002 doi: 10.1016/j.foreco.2004.05.002 |
| [25] | Liang C Y, Li J, Li S X, et al. Human activity changed the genetic pattern of the orchid Phaius flavus population [J]. Diversity, 2024, 16(11): 685. https://doi.org/10.3390/d16110685 doi: 10.3390/d16110685 |
| [26] | Ellstrand N C. Is gene flow the most important evolutionary force in plants? [J]. American Journal of Botany, 2014, 101(5): 737−753. https://doi.org/10.3732/ajb.1400024 doi: 10.3732/ajb.1400024 |
| [27] | Cascante-Marín A, Oostermeijer G, Wolf J, et al. Genetic diversity and spatial genetic structure of an epiphytic bromeliad in Costa Rican montane secondary forest patches [J]. Biotropica, 2014, 46(4): 425−432. https://doi.org/10.1111/btp.12119 doi: 10.1111/btp.12119 |
| [28] | Parab G V, Krishnan S. Assessment of genetic variation among populations of Rhynchostylis retusa, an epiphytic orchid from Goa, India using ISSR and RAPD markers [J]. Indian Journal of Biotechnology, 2008, 7(3): 313−319. |
| [29] | De L C, Biswas S S. Adaptational mechanisms of epiphytic orchids: a review [J]. International Journal of Bio-resource and Stress Management, 2022, 13(11): 1312−1322. https://doi.org/10.23910/1.2022.3115a doi: 10.23910/1.2022.3115a |
| [30] | Abeli T, Jäkäläniemi A, Wannas L, et al. Pollen limitation and fruiting failure related to canopy closure in Calypso bulbosa (Orchidaceae), a northern food-deceptive orchid with a single flower [J]. Botanical Journal of the Linnean Society, 2013, 171(4): 744−750. https://doi.org/10.1111/boj.12014 doi: 10.1111/boj.12014 |
| [31] | Jacquemyn H, Brys R, Vandepitte K, et al. Fine‐scale genetic structure of life history stages in the food‐deceptive orchid Orchis purpurea [J]. Molecular Ecology, 2006, 15(10): 2801−2808. https://doi.org/10.1111/j.1365-294X.2006.02978.x doi: 10.1111/j.1365-294X.2006.02978.x |
| [32] | Sletvold N, Joffard N, Söderquist L. Fine-scale genetic structure in the orchid Gymnadenia conopsea is not associated with local density of flowering plants [J]. American Journal of Botany, 2024, 111(2): e16273. https://doi.org/10.1002/ajb2.16273 doi: 10.1002/ajb2.16273 |
| [33] | Tremblay R L, Ackerman J D. Gene flow and effective population size in Lepanthes (Orchidaceae): a case for genetic drift [J]. Biological Journal of the Linnean Society, 2001, 72(1): 47−62. https://doi.org/10.1111/j.1095-8312.2001.tb01300.x doi: 10.1111/j.1095-8312.2001.tb01300.x |