[1] |
SUBRAMANI R, AALBERSBERG W. Marine actinomycetes: an ongoing source of novel bioactive metabolites [J]. Microbiological Research, 2012, 167(10): 571 − 580. doi: 10.1016/j.micres.2012.06.005 |
[2] |
KAMJAM M, SIVALINGAM P, DENG Z, et al. Deep Sea actinomycetes and their secondary metabolites [J]. Frontiers in Microbiology, 2017, 8: 760. doi: 10.3389/fmicb.2017.00760 |
[3] |
SKROPETA D, WEI L. Recent advances in deep-sea natural products [J]. Natural Product Reports, 2014, 31(8): 999 − 1025. doi: 10.1039/C3NP70118B |
[4] |
WRIGHT P C, WESTACOTT R E, BURJA A M. Piezotolerance as a metabolic engineering tool for the biosynthesis of natural products [J]. Biomolecular Engineering, 2003, 20(4/5/6): 325 − 331. doi: 10.1016/s1389-0344(03)00042-x |
[5] |
MA L, BARTHOLOME A, TONG M H, et al. Identification of a fluorometabolite from Streptomyces sp. MA37: (2R3S4S)-5-fluoro-2, 3, 4-trihydroxypentanoic acid [J]. Chemical Science, 2015, 6(2): 1414 − 1419. doi: 10.1039/c4sc03540b |
[6] |
RAMALINGAM V, RAJARAM R. Antioxidant activity of 1-hydroxy-1-norresistomycin derived from Streptomyces variabilis KP149559 and evaluation of its toxicity against zebra fish Danio rerio [J]. RSC Advances, 2016, 6(20): 16615 − 16623. doi: 10.1039/C5RA22558B |
[7] |
SU J. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary [J]. Continental Shelf Research, 2004, 24(16): 1745 − 1760. doi: 10.1016/j.csr.2004.06.005 |
[8] |
蔡观强, 彭学超, 张玉兰. 南海沉积物物质来源研究的意义及其进展[J]. 海洋科学进展, 2011, 29(1): 113 − 121. doi: 10.3969/j.issn.1671-6647.2011.01.014 |
[9] |
BOETIUS A, WENZHöFER F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725 − 734. doi: 10.1038/ngeo1926 |
[10] |
FENG D, QIU J W, HU Y, et al. Cold seep systems in the South China Sea: an overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3 − 16. doi: 10.1016/j.jseaes.2018.09.021 |
[11] |
KNITTEL K, BOETIUS A. Anaerobic oxidation of methane: progress with an unknown process [J]. Annual Review of Microbiology, 2009, 63: 311 − 334. doi: 10.1146/annurev.micro.61.080706.093130 |
[12] |
VIGNERON A, CRUAUD P, PIGNET P, et al. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California) [J]. The ISME Journal, 2013, 7(8): 1595 − 1608. doi: 10.1038/ismej.2013.18 |
[13] |
孙瑜, 牛明杨, 刘俏, 等. 南海Formosa冷泉区沉积物微生物多样性与分布规律研究[J]. 微生物学报, 2022, 62(6): 2001 − 2020. |
[14] |
HU X Y, LI X M, YANG S Q, et al. New cytochalasin derivatives from deep-sea cold seep-derived endozoic fungus Curvularia verruculosa CS-129 [J]. Chemistry & Biodiversity, 2022, 19(8): e202200550. doi: 10.1002/cbdv.202200550 |
[15] |
HU X Y, WANG C Y, LI X M, et al. Cytochalasin derivatives from the endozoic Curvularia verruculosa CS-129, a fungus isolated from the deep-sea squat lobster Shinkaia crosnieri living in the cold seep environment [J]. Journal of Natural Products, 2021, 84(12): 3122 − 3130. doi: 10.1021/acs.jnatprod.1c00907 |
[16] |
SONG Q, YANG S Q, LI X M, et al. Aromatic polyketides from the deep-sea cold-seep mussel associated endozoic fungus Talaromyces minioluteus CS-138 [J]. Marine Drugs, 2022, 20(8): 529. doi: 10.3390/md20080529 |
[17] |
HU X, LI X, YANG S, et al. Vercytochalasins A and B: Two unprecedented biosynthetically related cytochalasins from the deep-sea-sourced endozoic fungus Curvularia verruculosa [J]. Chinese Chemical Letters, 2023, 34(2): 107516. doi: 10.1016/j.cclet.2022.05.030 |
[18] |
YAN L H, LI P H, LI X M, et al. Chevalinulins A and B, proangiogenic alkaloids with a spiro[bicyclo[2.2. 2]octane-diketopiperazine]skeleton from deep-sea cold-seep-derived fungus Aspergillus chevalieri CS-122 [J]. Organic Letters, 2022, 24(14): 2684 − 2688. doi: 10.1021/acs.orglett.2c00781 |
[19] |
JIN E, LI H, LIU Z, et al. Antibiotic dixiamycins from a cold-seep-derived Streptomyces olivaceus [J]. Journal of Natural Products, 2021, 84(9): 2606 − 2611. doi: 10.1021/acs.jnatprod.1c00411 |
[20] |
NIU M, FAN X, ZHUANG G, et al. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea [J]. FEMS Microbiology Ecology, 2017, 93(9): fix101. doi: 10.1093/femsec/fix101 |
[21] |
ZHUANG G C, XU L, LIANG Q, et al. Biogeochemistry, microbial activity, and diversity in surface and subsurface deep-sea sediments of South China Sea [J]. Limnology and Oceanography, 2019, 64(5): 2252 − 2270. doi: 10.1002/lno.11182 |
[22] |
JING H, WANG R, JIANG Q, et al. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps [J]. Science of the Total Environment, 2020, 748: 142459. doi: 10.1016/j.scitotenv.2020.142459 |
[23] |
LING J, GUAN H, LIU L, et al. The diversity, composition, and putative functions of gill-associated bacteria of bathymodiolin mussel and vesicomyid clam from Haima cold seep, South China Sea [J]. Microorganisms, 2020, 8(11): 1699. doi: 10.3390/microorganisms8111699 |
[24] |
WEISBURG W G, BARNS S M, PELLETIER D A, et al. 16S ribosomal DNA amplification for phylogenetic study [J]. Journal of Bacteriology, 1991, 173(2): 697 − 703. doi: 10.1128/jb.173.2.697-703.1991 |
[25] |
FOR THE BSAC WORKING PARTY ON SUSCEPTIBILITY TESTING, ANDREWS J M. BSAC standardized disc susceptibility testing method [J]. Journal of Antimicrobial Chemotherapy, 2001, 48(suppl_1): 43 − 57. doi: 10.1093/jac/48.suppl_1.43 |
[26] |
肖珂, 周双清, 许云, 等. 海绵共附生放线菌的分离鉴定与抑菌活性分析[J]. 热带生物学报, 2020, 11(2): 156 − 162. |
[27] |
CHENG C, OTHMAN E M, REIMER A, et al. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345 [J]. Tetrahedron Letters, 2016, 57(25): 2786 − 2789. doi: 10.1016/j.tetlet.2016.05.042 |
[28] |
KIM M, OH H S, PARK S C, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes [J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 346−351. doi: 10.1099/ijs.0.059774-0 |
[29] |
贾文文. 南大西洋深海放线菌的分离与多样性分析 [D]. 哈尔滨: 哈尔滨工业大学, 2013. |
[30] |
张玉便, 张改云. 南大西洋深海沉积物中可培养放线菌的多样性[J]. 应用海洋学学报, 2014, 33(4): 508 − 515. doi: 10.3969/J.ISSN.2095-4972.2014.04.008 |
[31] |
SAYAVEDRA-SOTO L A, HAMAMURA N, LIU C W, et al. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family [J]. Environmental Microbiology Reports, 2011, 3(3): 390 − 396. doi: 10.1111/j.1758-2229.2010.00239.x |
[32] |
ZHANG W, LIU Z, LI S, et al. Fluostatins i–k from the South China Sea-derived Micromonospora rosaria scsio N160 [J]. Journal of Natural Products, 2012, 75(11): 1937 − 1943. doi: 10.1021/np300505y |
[33] |
RUFF S E, BIDDLE J F, TESKE A P, et al. Global dispersion and local diversification of the methane seep microbiome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 4015 − 4020. doi: 10.1073/pnas.1421865112 |