[1] |
CHEN M, GRAEDEL T E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts[J]. Global Environmental Change, 2016, 36: 139 − 152. doi: 10.1016/j.gloenvcha.2015.12.005 |
[2] |
JIN X, BAI Z, OENEMA O, et al. Spatial planning needed to drastically reduce nitrogen and phosphorus surpluses in China’s agriculture[J]. Environmental Science & Technology, 2020, 54(19): 11894 − 11904. |
[3] |
LI M, GUO Z, ZHANG W. Balancing food security and environmental sustainability by optimizing seasonal-spatial crop production in Bangladesh[J]. Environmental Research Letters, 2021, 16(7): 74046. doi: 10.1088/1748-9326/ac0be4 |
[4] |
BAI Z, LIU L, OBERSTEINER M, et al. Agricultural trade impacts global phosphorus use and partial productivity[J]. Nature Food, 2023, 4(9): 762 − 773. doi: 10.1038/s43016-023-00822-w |
[5] |
LI B, LI P, ZENG X C, et al. Assessing the sustainability of phosphorus use in China: Flow patterns from 1980 to 2015[J]. Science of The Total Environment, 2020, 704: 135305. doi: 10.1016/j.scitotenv.2019.135305 |
[6] |
HUANG C, KANG W, XU S, et al. Growing phosphorus dilemma: The opportunity from aquatic systems' secondary phosphorus retention capacity[J]. Science of The Total Environment, 2021, 796: 148938. doi: 10.1016/j.scitotenv.2021.148938 |
[7] |
WHITE S, CORDELL D. Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security[J]. Sustainability, 2011, 3(10): 2027 − 2049. doi: 10.3390/su3102027 |
[8] |
CORDELL D, WHITE S. Sustainable phosphorus measures: Strategies and technologies for achieving phosphorus security[J]. Agronomy, 2013, 3(1): 86 − 116. doi: 10.3390/agronomy3010086 |
[9] |
ANTIKAINEN R, LEMOLA R, NOUSIAINEN J I, et al. Stocks and flows of nitrogen and phosphorus in the Finnish food production and consumption system[J]. Agriculture, Ecosystems & Environment, 2005, 107(2/3): 287 − 305. |
[10] |
LI H, LIU J, LI G, et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses[J]. Ambio, 2015, 44(2): 274 − 285. |
[11] |
BILLEN G, LASSALETTA L, GARNIER J. A biogeochemical view of the global agro-food system: Nitrogen flows associated with protein production, consumption and trade[J]. Global Food Security, 2014, 3(3/4): 209 − 219. |
[12] |
MA L, VELTHOF G L, WANG F H, et al. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005[J]. Science of The Total Environment, 2012, 434: 51 − 61. doi: 10.1016/j.scitotenv.2012.03.028 |
[13] |
马林, 马文奇, 张福锁, 等. 中国食物链养分流动与管理研究[J]. 中国生态农业学报(中英文), 2018, 26(10): 1494 − 1500. |
[14] |
丁尚, 郭浩浩, 宋晨阳, 等. 海南岛农牧生产体系磷元素流动时空变化特征[J]. 中国农业科学, 2019, 52(5): 860 − 873. doi: 10.3864/j.issn.0578-1752.2019.05.008 |
[15] |
海南省统计局. 海南统计年鉴(1990-2020)[M/OL]. 北京: 中国统计出版社, 2021. (https://www.hainan.gov.cn/ |
[16] |
中国统计局. 中国渔业统计年鉴(1990—2020)[M/OL]. 北京: 中国农业出版社, 2021. (https://www.cnki.net/ |
[17] |
MA L, MA W Q, VELTHOF G L, et al. Modeling nutrient flows in the food chain of China[J]. Journal of Environmental Quality, 2010, 39(4): 1279 − 1289. doi: 10.2134/jeq2009.0403 |
[18] |
韩雪, 常瑞雪, 杜鹏祥, 等. 不同蔬菜种类的产废比例及性状分析[J]. 农业资源与环境学报, 2015, 32(4): 377 − 382. |
[19] |
李书田, 金继运. 中国不同区域农田养分输入、输出与平衡[J]. 中国农业科学, 2011, 44(20): 4207 − 4229. |
[20] |
刘晓永. 中国农业生产中的养分平衡与需求研究[D]. 北京: 中国农业科学院, 2018. |
[21] |
王莹, 梁勤爽, 杨志敏, 等. 淋溶对畜禽粪便释放氮磷面源污染物的影响[J]. 西南大学学报(自然科学版), 2012, 34(1): 92 − 98. |
[22] |
王圣伟, 周永馨, 王丽霞, 等. 秸秆还田对畜禽粪污土地承载力的影响[J]. 湖北农业科学, 2023, 62(3): 187 − 193. |
[23] |
朱瑶瑶. 我国城乡居民在外就餐消费研究[D]. 南京: 南京财经大学, 2018. |
[24] |
陈东兴. 种养殖池塘水质, 污染物排放强度及氮, 磷收支[D]. 上海: 上海海洋大学, 2012. |
[25] |
刘国锋, 徐跑, 吴霆, 等. 中国水产养殖环境氮磷污染现状及未来发展思路[J]. 江苏农业学报, 2018, 34(1): 225 − 233. doi: 10.3969/j.issn.1000-4440.2018.01.033 |
[26] |
张晓萌, 王寅, 焉莉, 等. 东北地区农牧系统氮、磷养分流动特征[J]. 中国农业科学, 2018, 51(3): 417 − 429. doi: 10.3864/j.issn.0578-1752.2018.03.003 |
[27] |
张晓萌, 王寅, 焉莉, 等. 长春地区食物链磷素养分流动历史变化特征分析[J]. 中国生态农业学报, 2017, 25(8): 1099 − 1105. |
[28] |
MA L, WANG F, ZHANG W, et al. Environmental Assessment of Management Options for Nutrient Flows in the Food Chain in China[J]. Environmental Science & Technology, 2013, 47(13): 7260 − 7268. |
[29] |
侯立恒, 王熊飞, 王汀忠, 等. 海南省耕地有机质和pH值变化分析[J]. 农业科技通讯, 2018(1): 120 − 123. |
[30] |
魏志标, 柏兆海, 马林, 等. 中国栽培草地氮磷流动空间特征[J]. 中国农业科学, 2018, 51(3): 535 − 555. doi: 10.3864/j.issn.0578-1752.2018.03.012 |
[31] |
张建杰, 郭彩霞, 张一弓, 等. 山西省农牧生产体系磷流动空间变异特征[J]. 中国生态农业学报, 2016, 24(5): 553 − 562. |
[32] |
鲁如坤, 刘鸿翔, 闻大中, 等. 我国典型地区农业生态系统养分循环和平衡研究Ⅰ. 农田养分支出参数[J]. 土壤通报, 1996, 27(4): 145 − 151. |
[33] |
BAI Z H, MA L, MA W Q, et al. Changes in phosphorus use and losses in the food chain of China during 1950–2010 and forecasts for 2030[J]. Nutrient Cycling in Agroecosystems, 2016, 104(3): 361 − 372. doi: 10.1007/s10705-015-9737-y |
[34] |
ZHANG F, CUI Z, FAN M, et al. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China[J]. Journal of Environmental Quality, 2011, 40(4): 1051 − 1057. doi: 10.2134/jeq2010.0292 |
[35] |
ZHENG L, JING X, ZHANG Q, et al. Nitrogen and phosphorus trajectories (1998–2030) under regional development strategy of mainland China[J]. Science of The Total Environment, 2021, 794: 148655. doi: 10.1016/j.scitotenv.2021.148655 |
[36] |
SCHNEIDER K D, THIESSEN M J, ZVOMUYA F, et al. Options for improved phosphorus cycling and use in agriculture at the field and regional scales[J]. Journal of Environmental Quality, 2019, 48(5): 1247 − 1264. doi: 10.2134/jeq2019.02.0070 |
[37] |
SPRINGMANN M, CLARK M, MASON-D'CROZ D, et al. Options for keeping the food system within environmental limits[J]. Nature, 2018, 562(7728): 519 − 525. doi: 10.1038/s41586-018-0594-0 |
[38] |
LE C, ZHA Y, LI Y, et al. Eutrophication of lake waters in China: Cost, Causes, and Control[J]. Environmental Management (New York), 2010, 45(4): 662 − 668. |
[39] |
MA L, ZHANG W F, MA W Q, et al. An Analysis of developments and challenges in nutrient management in China[J]. Journal of Environmental Quality, 2013, 42(4): 951 − 961. doi: 10.2134/jeq2012.0459 |
[40] |
张少若, 黄承和, 尹俊梅, 等. 海南热带土壤对磷的吸附特性与施磷量的关系[J]. 热带作物学报, 1993(1): 53 − 60. |
[41] |
YUAN Z, LIU X, WU H, et al. Anthropogenic phosphorus flow analysis of Lujiang County, Anhui Province, Central China[J]. Ecological Modelling, 2011, 222(8): 1534 − 1543. doi: 10.1016/j.ecolmodel.2011.01.016 |
[42] |
陈晓娟. 海南岛海岸带湿地类保护地游憩发展现状及其问题研究[D]. 海口: 海南师范大学, 2024. |
[43] |
CORDELL D, ROSEMARIN A, SCHRODER J J, et al. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options[J]. Chemosphere, 2011, 84(6): 747 − 758. doi: 10.1016/j.chemosphere.2011.02.032 |
[44] |
LWIN C M, MURAKAMI M, HASHIMOTO S. The implications of allocation scenarios for global phosphorus flow from agriculture and wastewater[J]. Resources, Conservation and Recycling, 2017, 122: 94 − 105. doi: 10.1016/j.resconrec.2017.01.017 |
[45] |
BAI Z, MA L, JIN S, et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in China[J]. Environmental Science & Technology, 2016, 50(24): 13409 − 13418. |
[46] |
ZHOU J, JIAO X, MA L, et al. Model-based analysis of phosphorus flows in the food chain at county level in China and options for reducing the losses towards green development[J]. Environmental Pollution, 2021, 288: 117768. doi: 10.1016/j.envpol.2021.117768 |
[47] |
CHILDERS D L, CORMAN J, EDWARDS M, et al. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle[J]. BioScience, 2011, 61(2): 117 − 124. doi: 10.1525/bio.2011.61.2.6 |
[48] |
SCHNEIDER K D, THIESSEN M J, ZVOMUYA F, et al. Options for Improved Phosphorus Cycling and Use in Agriculture at the Field and Regional Scales[J]. J Environ Qual, 2019, 48(5): 1247 − 1264. doi: 10.2134/jeq2019.02.0070 |
[49] |
XIE J, ZHUGE X, LIU X, et al. Environmental sustainability opportunity and socio-economic cost analyses of phosphorus recovery from sewage sludge[J]. Environmental Science and Ecotechnology, 2023, 16: 100258. doi: 10.1016/j.ese.2023.100258 |
[50] |
WANG M, MA L, STROKAL M, et al. Hotspots for nitrogen and phosphorus losses from food production in China: A county-scale analysis[J]. Environmental Science & Technology, 2018, 52(10): 5782 − 5791. |
[51] |
YUAN Z, LIU X, WU H, et al. Anthropogenic phosphorus flow analysis of Lujiang County, Anhui Province, Central China[J]. Ecological Modelling, 2011, 222(8): 1534 − 1543. doi: 10.1016/j.ecolmodel.2011.01.016 |
[52] |
KERSTI L , ERIK J M , ANNE-MARIE T. Phosphorus flows to and from Swedish agriculture and food chain.[J]. Ambio, 2012, 41(8): 883 − 93. |
[53] |
马继勇, 王丹丹, 赵洪伟. 海南岛珠溪河流域农业系统氮素流动特征及其环境效应[J]. 海南大学学报(自然科学版), 2024, 42(4): 393 − 402. doi: 10.15886/j.cnki.hdxbzkb.2024010201 |
[54] |
BAI Z H, MA L, OENEMA O, et al. Nitrogen and phosphorus use efficiencies in dairy production in China[J]. Journal of Environmental Quality, 2013, 42(4): 990 − 1001. doi: 10.2134/jeq2012.0464 |