[1] |
LASTDRAGER J, HANSON J, SMEEKENS S. Sugar signals and the control of plant growth and development[J]. Journal of Experimental Botany, 2014, 65(3): 799 − 807. doi: 10.1093/jxb/ert474 |
[2] |
ROLLAND F, BAENA-GONZALEZ E, SHEEN J. Sugar sensing and signaling in plants: conserved and novel mechanisms[J]. Annual Review of Plant Biology, 2006, 57: 675 − 709. doi: 10.1146/annurev.arplant.57.032905.105441 |
[3] |
GIBSON S I. Control of plant development and gene expression by sugar signaling[J]. Current Opinion in Plant Biology, 2005, 8(1): 93 − 102. doi: 10.1016/j.pbi.2004.11.003 |
[4] |
LUKASZUK E, RYS M, MOŻDŻEŃ K, et al. Photosynthesis and sucrose metabolism in leaves of Arabidopsis thaliana aos, ein4 and rcd1 mutants as affected by wounding[J]. Acta Physiologiae Plantarum, 2017, 39(1): 17. doi: 10.1007/s11738-016-2309-1 |
[5] |
HUANG H, JIAO Y X, TONG Y, et al. Comparative analysis of drought-responsive biochemical and transcriptomic mechanisms in two Dendrobium officinale genotypes[J]. Industrial Crops and Products, 2023, 199: 116766. doi: 10.1016/j.indcrop.2023.116766 |
[6] |
KHAN M I R, PALAKOLANU S R, CHOPRA P, et al. Improving drought tolerance in rice: ensuring food security through multi-dimensional approaches[J]. Physiologia Plantarum, 2021, 172(2): 645 − 668. doi: 10.1111/ppl.13223 |
[7] |
EOM J S, CHEN L Q, SOSSO D, et al. SWEETs, transporters for intracellular and intercellular sugar translocation[J]. Current Opinion in Plant Biology, 2015, 25: 53 − 62. doi: 10.1016/j.pbi.2015.04.005 |
[8] |
XUAN Y H, HU Y B, CHEN L Q, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): E3685 − E3694. doi: 10.1073/pnas.1311244110 |
[9] |
FRANK BAKER R, LEACH K A, BRAUN D M. SWEET as sugar: new sucrose effluxers in plants[J]. Molecular Plant, 2012, 5(4): 766 − 768. doi: 10.1093/mp/SSS054 |
[10] |
LEE Y, NISHIZAWA T, YAMASHITA K, et al. Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter[J]. Nature Communications, 2015, 6(1): 6112. doi: 10.1038/ncomms7112 |
[11] |
SCHNEIDER A, GODIN C, BOUDON F, et al. Light regulation of axillary bud outgrowth along plant axes: an overview of the roles of sugars and hormones[J]. Frontiers in Plant Science, 2019, 10: 1296. doi: 10.3389/fpls.2019.01296 |
[12] |
ANJALI A, FATIMA U, MANU M S, et al. Structure and regulation of SWEET transporters in plants: an update[J]. Plant Physiology and Biochemistry, 2020, 156: 1 − 6. doi: 10.1016/j.plaphy.2020.08.043 |
[13] |
JI J L, YANG L M, FANG Z Y, et al. Plant SWEET family of sugar transporters: structure, evolution and biological functions[J]. Biomolecules, 2022, 12(2): 205. doi: 10.3390/biom12020205 |
[14] |
NINAN A S, GRANT J, SONG J C, et al. Expression of genes related to sugar and amino acid transport and cytokinin metabolism during leaf development and senescence in Pisum sativum L.[J]. Plants, 2019, 8(3): 76. doi: 10.3390/plants8030076 |
[15] |
KLEMENS P A W, PATZKE K, DEITMER J, et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J]. Plant Physiology, 2013, 163(3): 1338 − 1352. doi: 10.1104/pp.113.224972 |
[16] |
IQBAL J, ZHANG W H, FAN Y D, et al. Genome-wide bioinformatics analysis of SWEET gene family and expression verification of candidate PaSWEET genes in Potentilla anserina[J]. Plants, 2024, 13(3): 406. doi: 10.3390/plants13030406 |
[17] |
TIAN R R, XU J Y, XU Z C, et al. Genome-wide identification and expression analysis of SWEET gene family in strawberry[J]. Horticulturae, 2024, 10(2): 191. doi: 10.3390/horticulturae10020191 |
[18] |
YUE W H, CAI K F, XIA X, et al. Genome-wide identification, expression pattern and genetic variation analysis of SWEET gene family in barley reveal the artificial selection of HvSWEET1a during domestication and improvement[J]. Frontiers in Plant Science, 2023, 14: 1137434. doi: 10.3389/fpls.2023.1137434 |
[19] |
HAN X W, HAN S, ZHU Y X, et al. Genome-wide identification and expression analysis of the SWEET gene family in Capsicum annuum L.[J]. International Journal of Molecular Sciences, 2023, 24(24): 17408. doi: 10.3390/ijms242417408 |
[20] |
CAO L H, WANG J Y, WANG L X, et al. Genome-wide analysis of the SWEET gene family in Hemerocallis citrina and functional characterization of HcSWEET4a in response to salt stress[J]. BMC Plant Biology, 2024, 24(1): 661. doi: 10.1186/s12870-024-05376-y |
[21] |
WU Y D, DI T M, WU Z J, et al. CsLHY positively regulates cold tolerance by activating CsSWEET17 in tea plants[J]. Plant Physiology and Biochemistry, 2024, 207: 108341. doi: 10.1016/j.plaphy.2024.108341 |
[22] |
WANG L, YAO L N, HAO X Y, et al. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis[J]. Plant Molecular Biology, 2018, 96(6): 577 − 592. doi: 10.1007/s11103-018-0716-y |
[23] |
VALIFARD M, LE HIR R, MÜLLER J, et al. Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance[J]. Plant Physiology, 2021, 187(4): 2716 − 2730. doi: 10.1093/plphys/kiab436 |
[24] |
XU X Y, ZHANG C, WANG N, et al. Bioactivities and mechanism of actions of Dendrobium officinale: a comprehensive review[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022(1): 6293355. doi: 10.1155/2022/6293355 |
[25] |
LI Y X, ZHANG T T, XING W T, et al. Comprehensive genomic characterization of the NAC transcription factors and their response to drought stress in Dendrobium catenatum[J]. Agronomy, 2022, 12(11): 2753. doi: 10.3390/agronomy12112753 |
[26] |
ZHANG G Q, XU Q, BIAN C, et al. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution[J]. Scientific Reports, 2016, 6(1): 19029. doi: 10.1038/srep19029 |
[27] |
HAO L, SHI X, QIN S W, et al. Genome-wide identification, characterization and transcriptional profile of the SWEET gene family in Dendrobium officinale[J]. BMC Genomics, 2023, 24(1): 378. doi: 10.1186/s12864-023-09419-w |
[28] |
CHEN C J, WU Y, LI J W, et al. TBtools-Ⅱ: a “one for all, all for one” bioinformatics platform for biological big-data mining[J]. Molecular Plant, 2023, 16(11): 1733 − 1742. doi: 10.1016/j.molp.2023.09.010 |
[29] |
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498 − 2504. doi: 10.1101/gr.1239303 |
[30] |
ZHANG T T, CUI Z, LI Y X, et al. Genome-wide identification and expression analysis of MYB transcription factor superfamily in Dendrobium catenatum[J]. Frontiers in Genetics, 2021, 12: 714696. doi: 10.3389/fgene.2021.714696 |
[31] |
JEENA G S, KUMAR S, SHUKLA R K. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants[J]. Plant Molecular Biology, 2019, 100(4/5): 351 − 365. doi: 10.1007/s11103-019-00872-4 |
[32] |
CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323): 527 − 532. doi: 10.1038/nature09606 |
[33] |
GAUTAM T, SARIPALLI G, GAHLAUT V, et al. Further studies on sugar transporter (SWEET) genes in wheat (Triticum aestivum L.)[J]. Molecular Biology Reports, 2019, 46(2): 2327 − 2353. doi: 10.1007/s11033-019-04691-0 |
[34] |
MIZUNO H, KASUGA S, KAWAHIGASHI H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling[J]. Biotechnology for Biofuels, 2016, 9(1): 127. doi: 10.1186/s13068-016-0546-6 |
[35] |
FENG C Y, HAN J X, HAN X X, et al. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J]. Gene, 2015, 573(2): 261 − 272. doi: 10.1016/j.gene.2015.07.055 |
[36] |
LIN Q H, ZHONG Q Z, ZHANG Z H. Identification and functional analysis of SWEET gene family in Averrhoa carambola L. fruits during ripening[J]. PeerJ, 2021, 9: e11404. doi: 10.7717/peerj.11404 |
[37] |
ZHONG L J, XU S Y, SONG C C, et al. Genome-wide identification, characterization, and expression profile of SWEETs gene family in grapevine (Vitis vinifera L. )[J]. Horticulturae, 2024, 10(5): 428. doi: 10.3390/horticulturae10050428 |
[38] |
DU Y L, LI W J, GENG J, et al. Genome-wide identification of the SWEET gene family in Phaseolus vulgaris L. and their patterns of expression under abiotic stress[J]. Journal of Plant Interactions, 2022, 17(1): 390 − 403. doi: 10.1080/17429145.2022.2044079 |
[39] |
CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323): 527−532. doi:10.1038/nature09606 (查阅网上资料,本条文献与第32条文献重复,请确认) |
[40] |
SUI J L, XIAO X H, QI J Y, et al. The SWEET gene family in Hevea brasiliensis–its evolution and expression compared with four other plant species[J]. FEBS Open Bio, 2017, 7(12): 1943 − 1959. doi: 10.1002/2211-5463.12332 |
[41] |
HU W C, HUA X T, ZHANG Q, et al. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics[J]. BMC Plant Biology, 2018, 18(1): 270. doi: 10.1186/s12870-018-1495-y |
[42] |
LIU B, DU H W, RUTKOWSKI R, et al. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis[J]. Science, 2012, 337(6092): 351 − 354. doi: 10.1126/science.1220281 |
[43] |
LIU J H, PENG T, DAI W S. Critical cis-acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants[J]. Plant Molecular Biology Reporter, 2014, 32(2): 303 − 317. doi: 10.1007/s11105-013-0667-z |
[44] |
QIN J X, JIANG Y J, LU Y Z, et al. Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)[J]. Journal of Integrative Agriculture, 2020, 19(7): 1704 − 1720. doi: 10.1016/S2095-3119(19)62761-9 |
[45] |
MATHAN J, SINGH A, RANJAN A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice[J]. Physiologia Plantarum, 2021, 171(4): 620 − 637. doi: 10.1111/ppl.13210 |
[46] |
DU Y L, ZHAO Q, CHEN L R, et al. Effect of drought stress during soybean R2-R6 growth stages on sucrose metabolism in leaf and seed[J]. International Journal of Molecular Sciences, 2020, 21(2): 618. doi: 10.3390/ijms21020618 |
[47] |
JIANG L, SONG C, ZHU X, et al. SWEET transporters and the potential functions of these sequences in tea (Camellia sinensis)[J]. Frontiers in Genetics, 2021, 12: 655843. doi: 10.3389/fgene.2021.655843 |