[1] |
YANG S G, CAI J S, WANG M, et al. The construction and analysis of wax gourd pangenome uncover fruit quality-related and resistance genes[J]. Scientia Horticulturae, 2023, 318: 112084. doi: 10.1016/j.scienta.2023.112084 |
[2] |
谢大森, 江彪, 刘文睿, 等. 优质、抗病冬瓜多样化育种研究进展[J]. 广东农业科学, 2020, 47(11): 50 − 59. doi: 10.16768/j.issn.1004-874X.2020.11.006 |
[3] |
何晓明, 彭庆务, 王敏, 等. 我国节瓜遗传育种研究进展[J]. 广东农业科学, 2021, 48(9): 1 − 11. doi: 10.16768/j.issn.1004-874X.2021.09.001 |
[4] |
石博, 关峰, 张景云, 等. 冬瓜枯萎病研究进展[J]. 中国瓜菜, 2022, 35(11): 11 − 14. doi: 10.3969/j.issn.1673-2871.2022.11.002 |
[5] |
DITA M, BARQUERO M, HECK D, et al. Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management[J]. Frontiers in Plant Science, 2018, 9: 1468. doi: 10.3389/fpls.2018.01468 |
[6] |
袁飞, 刘子凡, 廖道龙, 等. 南瓜嫁接提高冬瓜枯萎病抗性的化感机制[J]. 中国瓜菜, 2021, 34(5): 26 − 29. doi: 10.3969/j.issn.1673-2871.2021.05.005 |
[7] |
朱白婢, 胡艳平, 云天海, 等. 冬瓜砧木新品种“海砧1号”的选育[J]. 北方园艺, 2018(10): 208 − 210. doi: 10.11937/bfyy.20180051 |
[8] |
廖道龙, 冯学杰, 朱白俾, 等. 冬瓜嫁接砧木评价及其产量与性状的相关性分析[J]. 南方农业学报, 2017, 48(8): 1434 − 1440. doi: 10.3969/j.issn.2095-1191.2017.08.16 |
[9] |
黄项心兰, 廖道龙, 刘子凡, 等. 不同砧木材料嫁接冬瓜苗期氮营养特性综合评价[J]. 热带作物学报, 2022, 43(1): 137 − 144. doi: 10.3969/j.issn.1000-2561.2022.01.018 |
[10] |
符厚隆, 廖道龙, 刘子凡, 等. 南瓜作砧木嫁接冬瓜根系分泌物对土壤微生态的影响[J]. 中国瓜菜, 2022, 35(6): 56 − 61. doi: 10.3969/j.issn.1673-2871.2022.06.009 |
[11] |
FU H L, FU J Y, ZHOU B, et al. Biochemical mechanisms preventing wilting under grafting: a case study on pumpkin rootstock grafting to wax gourd[J]. Frontiers in Plant Science, 2024, 15: 1331698. doi: 10.3389/fpls.2024.1331698 |
[12] |
SABRY S, ALI A Z, ABDEL-KADER D A, et al. Histopathological and biochemical aspects of grafted and non-grafted cucumber infected with stem rot caused by Fusarium spp.[J]. Saudi Journal of Biological Sciences, 2022, 29(3): 1770 − 1780. doi: 10.1016/j.sjbs.2021.10.053 |
[13] |
ATTIA E Z, FAROUK H M, ABDELMOHSEN U R, et al. Antimicrobial and extracellular oxidative enzyme activities of endophytic fungi isolated from alfalfa (Medicago sativa) assisted by metabolic profiling[J]. South African Journal of Botany, 2020, 134: 156 − 162. doi: 10.1016/j.sajb.2019.12.003 |
[14] |
WESTPHAL K R, HEIDELBACH S, ZEUNER E J, et al. The effects of different potato dextrose agar media on secondary metabolite production in Fusarium[J]. International Journal of Food Microbiology, 2021, 347: 109171. doi: 10.1016/j.ijfoodmicro.2021.109171 |
[15] |
WANG B B, YUAN J, ZHANG J, et al. Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana[J]. Biology and Fertility of Soils, 2013, 49(4): 435 − 446. doi: 10.1007/s00374-012-0739-5 |
[16] |
张金平, 何晓明, 江彪, 等. 镰刀菌酸胁迫下节瓜实时荧光定量PCR分析内参基因的选择[J]. 广东农业科学, 2014, 41(10): 120 − 125. doi: 10.3969/j.issn.1004-874X.2014.10.029 |
[17] |
张浩, 李海玉, 施松梅, 等. 2种黑籽南瓜响应枯萎病菌侵染的转录组学研究[J]. 中国农学通报, 2023, 39(18): 107 − 116. doi: 10.11924/j.issn.1000-6850.casb2023-0088 |
[18] |
韩彦卿. 水稻抗稻曲病QTL定位及抗/感品种响应稻曲病菌侵染的表达谱分析[D]. 北京: 中国农业大学, 2015. |
[19] |
ZHANG C C, YAO X H, REN H D, et al. Genome-wide identification and characterization of the phenylalanine ammonia-lyase gene family in pecan (Carya illinoinensis)[J]. Scientia Horticulturae, 2022, 295: 110800. doi: 10.1016/j.scienta.2021.110800 |
[20] |
谢迎秋, 孟蒙, 朱祯. 植物反式作用因子研究进展[J]. 高技术通讯, 2000, 10(2): 97 − 102. doi: 10.3321/j.issn:1002-0470.2000.02.024 |
[21] |
马达. 拟南芥bHLH转录因子HFR1调控抗病性与发育的机制研究[D]. 长沙: 湖南农业大学, 2014. |
[22] |
赵明奇, 刘晓洁, 梁玉青, 等. 新疆野苹果AP2/ERF转录因子家族鉴定与响应腐烂病的表达分析[J]. 西北植物学报, 2022, 42(6): 930 − 942. doi: 10.7606/j.issn.1000-4025.2022.06.0930 |
[23] |
李铃仙. 小麦抗病基因的发现与应用[J]. 农业灾害研究, 2023, 13(10): 49 − 51. doi: 10.3969/j.issn.2095-3305.2023.10.017 |
[24] |
ZHANG Z J, CHEN J M, SU Y Y, et al. TaLHY, a 1R-MYB transcription factor, plays an important role in disease resistance against stripe rust fungus and ear heading in wheat[J]. PLoS One, 2015, 10(5): e0127723. doi: 10.1371/journal.pone.0127723 |
[25] |
NGUYEN N H, LEE H. MYB-related transcription factors function as regulators of the circadian clock and anthocyanin biosynthesis in Arabidopsis[J]. Plant Signaling & Behavior, 2016, 11(3): e1139278. doi: 10.1080/15592324.2016.1139278 |
[26] |
LIU Q, YAN S J, HUANG W J, et al. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice[J]. Plant Molecular Biology, 2018, 98(4): 289 − 302. doi: 10.1007/s11103-018-0768-z |
[27] |
PEROCHON A, KAHLA A, VRANIĆ M, et al. A wheat NAC interacts with an orphan protein and enhances resistance to Fusarium head blight disease[J]. Plant Biotechnology Journal, 2019, 17(10): 1892 − 1904. doi: 10.1111/pbi.13105 |
[28] |
ZHONG R Q, MCCARTHY R L, LEE C, et al. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar[J]. Plant Physiology, 2011, 157(3): 1452 − 1468. doi: 10.1104/pp.111.181354 |
[29] |
VANHOLME R, DE MEESTER B, RALPH J, et al. Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology, 2019, 56: 230 − 239. doi: 10.1016/j.copbio.2019.02.018 |
[30] |
李陈莹, 王冉, 梁岩. 维管束木质化调控植物抗青枯病的研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(5): 633 − 643. doi: 10.3785/j.issn.1008-9209.2023.06.171 |
[31] |
WANG Y, JIANG C J, LI Y Y, et al. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis[J]. Plant Cell Reports, 2012, 31(1): 27 − 34. doi: 10.1007/s00299-011-1136-5 |
[32] |
XU X B, TIAN S P. Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit[J]. Postharvest Biology and Technology, 2008, 49(3): 379 − 385. doi: 10.1016/j.postharvbio.2008.02.003 |
[33] |
刘茜, 王爱云, 荣玮. ERF转录因子在作物抗病基因工程中的研究进展[J]. 种子, 2014, 33(1): 48 − 53. doi: 10.3969/j.issn.1001-4705.2014.01.013 |
[34] |
VALENZUELA-RIFFO F, ZÚÑIGA P E, MORALES-QUINTANA L, et al. Priming of defense systems and upregulation of MYC2 and JAZ1 genes after Botrytis cinerea inoculation in methyl jasmonate-treated strawberry fruits[J]. Plants, 2020, 9(4): 447. doi: 10.3390/plants9040447 |
[35] |
孙钧政, 李美玲, 唐金艳, 等. 水杨酸诱导果实采后抗病性机制研究进展[J]. 亚热带植物科学, 2021, 50(5): 413 − 420. doi: 10.3969/j.issn.1009-7791.2021.05.013 |
[36] |
温晓丽, 罗维巍, 范翌婷, 等. 茉莉酸甲酯诱导的采后果蔬抗病性及其机制研究进展[J]. 食品安全质量检测学报, 2023, 14(12): 166 − 172. doi: 10.19812/j.cnki.jfsq11-5956/ts.2023.12.032 |
[37] |
ANDOLFO G, ERCOLANO M R. Plant innate immunity multicomponent model[J]. Frontiers in Plant Science, 2015, 6: 987. doi: 10.3389/fpls.2015.00987 |
[38] |
CALLE GARCÍA J, GUADAGNO A, PAYTUVI-GALLART A, et al. PRGdb 4.0: an updated database dedicated to genes involved in plant disease resistance process[J]. Nucleic Acids Research, 2022, 50(D1): D1483 − D1490. doi: 10.1093/nar/gkab1087 |
[39] |
SHAN Y F, LI M Y, WANG R Z, et al. Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears[J]. Journal of Integrative Agriculture, 2023, 22(1): 120 − 138. doi: 10.1016/j.jia.2022.08.040 |
[40] |
DI C X, ZHANG M X, XU S J, et al. Role of poly-galacturonase inhibiting protein in plant defense[J]. Critical Reviews in Microbiology, 2006, 32(2): 91 − 100. doi: 10.1080/10408410600709834 |
[41] |
WANG J, QU B Y, DOU S J, et al. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity[J]. BMC Plant Biology, 2015, 15: 49. doi: 10.1186/s12870-015-0442-4 |