| [1] | 余克服. 珊瑚礁科学概论[M]. 北京: 科学出版社, 2018. (查阅网上资料, 未找到本条文献页码信息, 请补充) |
| [2] | 龙丽娟, 杨芳芳, 韦章良. 珊瑚礁生态系统修复研究进展[J]. 热带海洋学报, 2019, 38(6): 1−8. https://doi.org/10.11978/2019066 doi: 10.11978/2019066 |
| [3] | Leis J M. Pacific coral-reef fishes: the implications of behaviour and ecology of larvae for biodiversity and conservation, and a reassessment of the open population paradigm [J]. Environmental Biology of Fishes, 2002, 65(2): 199−208. https://doi.org/10.1023/A:1020096720543 doi: 10.1023/A:1020096720543 |
| [4] | Brown B E. Coral bleaching: causes and consequences [J]. Coral Reefs, 1997, 16(S1): S129−S138. https://doi.org/10.1007/s003380050249 doi: 10.1007/s003380050249 |
| [5] | Baker A C, Glynn P W, Riegl B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook [J]. Estuarine, Coastal and Shelf Science, 2008, 80(4): 435−471. https://doi.org/10.1016/j.ecss.2008.09.003 doi: 10.1016/j.ecss.2008.09.003 |
| [6] | Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world's coral reefs [J]. Marine and Freshwater Research, 1999, 50(8): 839−866. https://doi.org/10.1071/mf99078 doi: 10.1071/mf99078 |
| [7] | Yu K F. Coral reefs in the South China Sea: their response to and records on past environmental changes [J]. Science China Earth Sciences, 2012, 55(8): 1217−1229. https://doi.org/10.1007/s11430-012-4449-5 doi: 10.1007/s11430-012-4449-5 |
| [8] | Decarlo T M, Cohen A L, Wong G T F, et al. Mass coral mortality under local amplification of 2°C ocean warming [J]. Scientific Reports, 2017, 7: 44586. https://doi.org/10.1038/srep44586 doi: 10.1038/srep44586 |
| [9] | Freudenthal H D. Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov. , a zooxanthella: taxonomy, life cycle, and morphology [J]. The Journal of Protozoology, 1962, 9(1): 45−52. https://doi.org/10.1111/j.1550-7408.1962.tb02579.x doi: 10.1111/j.1550-7408.1962.tb02579.x |
| [10] | Avise J C. Molecular markers, natural history and evolution [M]. New York: Springer, 1994: 798. https://doi.org/10.1007/978-1-4615-2381-9 |
| [11] | Lajeunesse T C, Parkinson J E, Gabrielson P W, et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts [J]. Current Biology, 2018, 28(16): 2570−2580. https://doi.org/10.1016/j.cub.2018.07.008 doi: 10.1016/j.cub.2018.07.008 |
| [12] | LaJeunesse T C. "Species" radiations of symbiotic dinoflagellates in the Atlantic and indo-pacific since the miocene-pliocene transition [J]. Molecular Biology and Evolution, 2005, 22(3): 570−581. https://doi.org/10.1093/molbev/msi042 doi: 10.1093/molbev/msi042 |
| [13] | Cunning R, Baker A C. Not just who, but how many: the importance of partner abundance in reef coral symbioses [J]. Frontiers in Microbiology, 2014, 5: 400. https://doi.org/10.3389/fmicb.2014.00400 doi: 10.3389/fmicb.2014.00400 |
| [14] | Cantin N E, Van Oppen M J H, Willis B L, et al. Juvenile corals can acquire more carbon from high-performance algal symbionts [J]. Coral Reefs, 2009, 28(2): 405−414. https://doi.org/10.1007/s00338-009-0478-8 doi: 10.1007/s00338-009-0478-8 |
| [15] | Little A F, Van Oppen M J H, Willis B L. Flexibility in algal endosymbioses shapes growth in reef corals [J]. Science, 2004, 304(5676): 1492−1494. https://doi.org/10.1126/science.1095733 doi: 10.1126/science.1095733 |
| [16] | Baker A C, Glynn P W, Riegl B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook [J]. Estuarine, Coastal and Shelf Science, 2008, 80(4): 435-471. doi: 10.1016/j.ecss.2008.09.003(查阅网上资料,本条文献与第5条文献重复,请确认) |
| [17] | Jones R, Bessell-Browne P, Fisher R, et al. Assessing the impacts of sediments from dredging on corals [J]. Marine Pollution Bulletin, 2016, 102(1): 9−29. https://doi.org/10.1016/j.marpolbul.2015.10.049 doi: 10.1016/j.marpolbul.2015.10.049 |
| [18] | Rowan R. Thermal adaptation in reef coral symbionts [J]. Nature, 2004, 430(7001): 742. https://doi.org/10.1038/430742a doi: 10.1038/430742a |
| [19] | Palumbi S R, Barshis D J, Traylor-Knowles N, et al. Mechanisms of reef coral resistance to future climate change [J]. Science, 2014, 344(6186): 895−898. https://doi.org/10.1126/science.1251336 doi: 10.1126/science.1251336 |
| [20] | Hume B C C, D’Angelo C, Smith E G, et al. Symbiodinium thermophilum sp. nov. , a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf [J]. Scientific Reports, 2015, 5: 8562. https://doi.org/10.1038/srep08562 doi: 10.1038/srep08562 |
| [21] | Silverstein R N, Cunning R, Baker A C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals [J]. Global Change Biology, 2015, 21(1): 236−249. https://doi.org/10.1111/gcb.12706 doi: 10.1111/gcb.12706 |
| [22] | Swain T D, Chandler J, Backman V, et al. Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial‐rank aggregation tool with broad application potential [J]. Functional Ecology, 2017, 31(1): 172−183. https://doi.org/10.1111/1365-2435.12694 doi: 10.1111/1365-2435.12694 |
| [23] | Reimer J D, Takishita K, Maruyama T. Molecular identification of symbiotic dinoflagellates (Symbiodinium spp. ) from Palythoa spp. (Anthozoa: Hexacorallia) in Japan [J]. Coral Reefs, 2006, 25(4): 521−527. https://doi.org/10.1007/s00338-006-0151-4 doi: 10.1007/s00338-006-0151-4 |
| [24] | De Palmas S, Denis V, Ribas-Deulofeu L, et al. Symbiodinium spp. associated with high-latitude scleractinian corals from Jeju Island, South Korea [J]. Coral Reefs, 2015, 34(3): 919−925. https://doi.org/10.1007/s00338-015-1286-y doi: 10.1007/s00338-015-1286-y |
| [25] | Ng T Y, Ang P. Low symbiont diversity as a potential adaptive strategy in a marginal non-reefal environment: a case study of corals in Hong Kong [J]. Coral Reefs, 2016, 35(3): 941−957. https://doi.org/10.1007/s00338-016-1458-4 doi: 10.1007/s00338-016-1458-4 |
| [26] | Chen B, Yu K F, Liang J Y, et al. Latitudinal variation in the molecular diversity and community composition of Symbiodiniaceae in coral from the South China Sea [J]. Frontiers in Microbiology, 2019, 10: 1278. https://doi.org/10.3389/fmicb.2019.01278 doi: 10.3389/fmicb.2019.01278 |
| [27] | Yu X P, Yu K F, Liao Z H, et al. Potential molecular traits underlying environmental tolerance of Pavona decussata and Acropora pruinosa in Weizhou Island, northern South China Sea [J]. Marine Pollution Bulletin, 2020, 156: 111199. https://doi.org/10.1016/j.marpolbul.2020.111199 doi: 10.1016/j.marpolbul.2020.111199 |
| [28] | Kawaguti S. On the physiology of reef corals VI. Study on the pigments [J]. Contributions of the Palao Tropical Biological Station, 1944, 2(4): 618−675. |
| [29] | Ahles M D. Some aspects of the morphology and physiology of symbiodinium microadriaticum [D]. New York: Fordham University, 1967. |
| [30] | 朱葆华. 几种腔肠动物共生藻的离体培养及其相关的生理学研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2005. |
| [31] | Xiang T T, Hambleton E A, Denofrio J C, et al. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity [J]. Journal of Phycology, 2013, 49(3): 447−458. https://doi.org/10.1111/jpy.12055 doi: 10.1111/jpy.12055 |
| [32] | 沈城. 温度胁迫对珊瑚共生虫黄藻超微结构及相关基因表达的影响[D]. 湛江: 广东海洋大学, 2014. https://doi.org/10.7666/d.D522208 |
| [33] | 覃良云, 许勇前, 陈金妮, 等. 造礁石珊瑚共生虫黄藻离体培养方法的优化[J]. 微生物学报, 2023, 63(4): 1658−1671. https://doi.org/10.13343/j.cnki.wsxb.20220656 doi: 10.13343/j.cnki.wsxb.20220656 |
| [34] | 黄思军, 邱晨, 龙超, 等. 三亚湾珊瑚来源虫黄藻不同株系微环境中微生物群落结构的差异比较分析[J]. 热带海洋学报, 2022, 41(6): 90−104. https://doi.org/10.11978/2022013 doi: 10.11978/2022013 |
| [35] | Wang J, Chen J Q, Wang S Y, et al. Monoclonal culture and characterization of Symbiodiniaceae C1 strain from the scleractinian coral Galaxea fascicularis [J]. Frontiers in Physiology, 2021, 11: 621111. https://doi.org/10.3389/fphys.2020.621111 doi: 10.3389/fphys.2020.621111 |
| [36] | Gong S Q, Li G, Jin X J, et al. Photobleaching and recovery of Symbiodiniaceae Effrenium voratum SCS01 reveals life form transformation under thermal stress [J]. Frontiers in Marine Science, 2021, 8: 740416. https://doi.org/10.3389/fmars.2021.740416 doi: 10.3389/fmars.2021.740416 |
| [37] | Lajeunesse T C, Loh W K W, Van Woesik R, et al. Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean [J]. Limnology and Oceanography, 2003, 48(5): 2046−2054. https://doi.org/10.4319/lo.2003.48.5.2046 doi: 10.4319/lo.2003.48.5.2046 |
| [38] | 龙超, 罗肇河, 韦章良, 等. 海南三亚鹿回头虫黄藻(Effrenium voratum)的形态学和系统发育学研究[J]. 热带海洋学报, 2021, 40(4): 35−43. https://doi.org/10.11978/2020102 doi: 10.11978/2020102 |
| [39] | 张薇, 罗肇河, 高越, 等. 中国沿海贪食共生藻的形态、超微结构和分子特征[J]. 应用海洋学学报, 2021, 40(2): 189−199. https://doi.org/10.3969/J.ISSN.2095-4972.2021.02.002 doi: 10.3969/J.ISSN.2095-4972.2021.02.002 |
| [40] | 王欣, 黎广钊. 北部湾涠洲岛珊瑚礁的研究现状及展望[J]. 广西科学院学报, 2009, 25(1): 72−75,80. https://doi.org/10.3969/j.issn.1002-7378.2009.01.019 doi: 10.3969/j.issn.1002-7378.2009.01.019 |
| [41] | Gates R D. Seawater temperature and sublethal coral bleaching in Jamaica [J]. Coral Reefs, 1990, 8(4): 193−197. https://doi.org/10.1007/BF00265010 doi: 10.1007/BF00265010 |
| [42] | Chakravarti L J, Van Oppen M J H. Experimental evolution in coral photosymbionts as a tool to increase thermal tolerance [J]. Frontiers in Marine Science, 2018, 5: 227. https://doi.org/10.3389/fmars.2018.00227 doi: 10.3389/fmars.2018.00227 |
| [43] | 魏力, 冯梦, 朱涵, 等. 软珊瑚共生虫黄藻的分离纯化、离体培养和鉴定: 中国, CN116836806A[P]. 2023-10-03. https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui. |
| [44] | 赵振鲁, 刘甲星, 张跃环, 等. 离体培养的虫黄藻(Symbiodinium voratum)对温度和光照的生理响应[J]. 海洋与湖沼, 2019, 50(2): 316−323. https://doi.org/10.11693/hyhz20180900229 doi: 10.11693/hyhz20180900229 |
| [45] | Lajeunesse T C, Parkinson J E, Gabrielson P W, et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts [J]. Current Biology, 2018, 28(16): 2570-2580. e6.(查阅网上资料,本条文献与第11条文献重复,请确认) https://doi.org/10.1016/j.cub.2018.07.008 |
| [46] | Aranda M, Li Y, Liew Y J, et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle [J]. Scientific Reports, 2016, 6: 39734. https://doi.org/10.1038/srep39734 doi: 10.1038/srep39734 |
| [47] | Schoenberg D A, Trench R K. Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of Symbiodinium microadriaticum [J]. Proceedings of the Royal Society B: Biological Sciences, 1980, 207(1169): 405−427. https://doi.org/10.1098/rspb.1980.0031 doi: 10.1098/rspb.1980.0031 |
| [48] | Antonelli P L, Rutz S F, Sammarco P W, et al. Evolution of symbiosis in hermatypic corals: a model of the past, present, and future [J]. Nonlinear Analysis: Real World Applications, 2016, 32: 389−402. https://doi.org/10.1016/j.nonrwa.2016.05.004 doi: 10.1016/j.nonrwa.2016.05.004 |