[1] |
CHERIAN S, RYU S B, CORNISH K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects[J]. Plant Biotechnology Journal, 2019, 17(11): 2041 − 2061. doi: 10.1111/pbi.13181 |
[2] |
BANGRAK P, CHOTIGEAT W. Molecular cloning and biochemical characterization of a novel cystatin from Hevea rubber latex[J]. Plant Physiology and Biochemistry, 2011, 49(3): 244 − 250. doi: 10.1016/j.plaphy.2010.12.007 |
[3] |
TANG C, YANG M, FANG Y, et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J]. Nature Plants, 2016, 2(6): 16073. doi: 10.1038/nplants.2016.73 |
[4] |
DE GEYTER N, GHOLAMI A, GOORMACHTIG S, et al. Transcriptional machineries in jasmonate-elicited plant secondary metabolism[J]. Trends in Plant Science, 2012, 17(6): 349 − 359. doi: 10.1016/j.tplants.2012.03.001 |
[5] |
WANG Y, GUO D, LI H L, et al. Characterization of HbWRKY1, a WRKY transcription factor from Hevea brasiliensis that negatively regulates HbSRPP[J]. Plant Physiology and Biochemistry, 2013, 71: 283 − 289. doi: 10.1016/j.plaphy.2013.07.020 |
[6] |
GUO D, YI H Y, LI H L, et al. Molecular characterization of HbCZF1, a Hevea brasiliensis CCCH-type zinc finger protein that regulates hmg1[J]. Plant Cell Reports, 2015, 34(9): 1569 − 1578. doi: 10.1007/s00299-015-1809-6 |
[7] |
LI H L, WEI L R, GUO D, et al. HbMADS4, a MADS-box transcription factor from Hevea brasiliensis, negatively regulates HbSRPP[J]. Frontiers in Plant Science, 2016, 7: 1709. |
[8] |
LI H L, QU L, GUO D, et al. Histone deacetylase interacts with a WRKY transcription factor to regulate the expression of the small rubber particle protein gene from Hevea brasiliensis[J]. Industrial Crops and Products, 2020, 145: 111989. doi: 10.1016/j.indcrop.2019.111989 |
[9] |
GUO D, LI H L, WANG Y, et al. A myelocytomatosis transcription factor from Hevea brasiliensis positively regulates the expression of the small rubber particle protein gene[J]. Industrial Crops and Products, 2019, 133: 90 − 97. doi: 10.1016/j.indcrop.2019.01.052 |
[10] |
WANG Y, ZHAN D F, LI H L, et al. Transcriptome-wide identification and characterization of MYB transcription factor genes in the laticifer cells of Hevea brasiliensis[J]. Frontiers in Plant Science, 2017, 8: 1974. doi: 10.3389/fpls.2017.01974 |
[11] |
WANG Y, ZHAN D F, LI H L, et al. Identification and characterization of the MADS-box genes highly expressed in the laticifer cells of Hevea brasiliensis[J]. Scientific Reports, 2019, 9(1): 12673. doi: 10.1038/s41598-019-48958-9 |
[12] |
QU L, LI H L, GUO D, et al. HbWRKY27, a group IIe WRKY transcription factor, positively regulates HbFPS1 expression in Hevea brasiliensis[J]. Scientific Reports, 2020, 10(1): 20639. doi: 10.1038/s41598-020-77805-5 |
[13] |
GUO D, YANG Z P, LI H L, et al. The 14-3-3 protein HbGF14a interacts with a RING zinc finger protein to regulate expression of the rubber transferase gene in Hevea brasiliensis[J]. Journal of Experimental Botany, 2018, 69(8): 1903 − 1912. doi: 10.1093/jxb/ery049 |
[14] |
DENG X, GUO D, YANG S, et al. Jasmonate signalling in the regulation of rubber biosynthesis in laticifer cells of rubber tree, Hevea brasiliensis[J]. Journal of Experimental Botany, 2018, 69(15): 3559 − 3571. doi: 10.1093/jxb/ery169 |
[15] |
DRöGE-LASER W, SNOEK B L, SNEL B, et al. The Arabidopsis bZIP transcription factor family: an update[J]. Current Opinion in Plant Biology, 2018, 45: 36 − 49. doi: 10.1016/j.pbi.2018.05.001 |
[16] |
张瑜, 原淑佳, 李瑞锋, 等. 植物bZIP转录因子生物学功能研究进展[J]. 山西中医药大学学报, 2023, 24(2): 221 − 225. |
[17] |
ELLENBERGER T E, BRANDL C J, STRUHL K, et al. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex[J]. Cell, 1992, 71(7): 1223 − 1237. doi: 10.1016/S0092-8674(05)80070-4 |
[18] |
LANDSCHULZ W H, JOHNSON P F, MCKNIGHT S L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins[J]. Science, 1988, 240(4860): 1759 − 1764. doi: 10.1126/science.3289117 |
[19] |
GUO Z, DZINYELA R, YANG L, et al. bZIP transcription factors: structure, modification, abiotic stress responses and application in plant improvement[J]. Plants, 2024, 13(15): 2058. doi: 10.3390/plants13152058 |
[20] |
ZHANG M, LIU Y, SHI H, et al. Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family[J]. BMC Genomics, 2018, 19(1): 159. doi: 10.1186/s12864-018-4511-6 |
[21] |
LI D, FU F, ZHANG H, et al. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.)[J]. BMC Genomics, 2015, 16: 771. doi: 10.1186/s12864-015-1990-6 |
[22] |
DUAN L, MO Z, FAN Y, et al. Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L[J]. BMC Genomics, 2022, 23(1): 318. doi: 10.1186/s12864-022-08547-z |
[23] |
ZHANG B, FENG C, CHEN L, et al. Identification and functional analysis of bZIP genes in cotton response to drought stress[J]. International Journal of Molecular Sciences, 2022, 23(23): 14894. doi: 10.3390/ijms232314894 |
[24] |
HU W, YANG H, YAN Y, et al. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava[J]. Scientific Reports, 2016, 6: 22783. doi: 10.1038/srep22783 |
[25] |
ZHANG F, FU X, LV Z, et al. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua[J]. Molecular Plant, 2015, 8(1): 163 − 175. doi: 10.1016/j.molp.2014.12.004 |
[26] |
FRICKE J, HILLEBRAND A, TWYMAN R M, et al. Abscisic acid-dependent regulation of small rubber particle protein gene expression in Taraxacum brevicorniculatum is mediated by TbbZIP1[J]. Plant & Cell Physiology, 2013, 54(4): 448 − 464. |
[27] |
CHANG C, LIU Z, WANG Y, et al. A bZIP transcription factor, CaLMF, mediated light-regulated camptothecin biosynthesis in Camptotheca acuminata[J]. Tree Physiology, 2019, 39(3): 372 − 380. |
[28] |
GUO D, LI H L, ZHU J H, et al. HbTGA1, a TGA transcription factor from Hevea brasiliensis, regulates the expression of multiple natural rubber biosynthesis genes[J]. Frontiers in Plant Science, 2022, 13: 909098. doi: 10.3389/fpls.2022.909098 |
[29] |
SHEN Q, HUANG H, ZHAO Y, et al. The transcription factor Aabzip9 positively regulates the biosynthesis of artemisinin in Artemisia annua[J]. Frontiers in Plant Science, 2019, 10: 1294. doi: 10.3389/fpls.2019.01294 |
[30] |
HAN H, XU F, LI Y, et al. Genome-wide characterization of bZIP gene family identifies potential members involved in flavonoids biosynthesis in Ginkgo biloba L[J]. Scientific Reports, 2021, 11(1): 23420. doi: 10.1038/s41598-021-02839-2 |
[31] |
HAN J, LIU H T, WANG S C, et al. A class I TGA transcription factor from Tripterygium wilfordii Hook. f. modulates the biosynthesis of secondary metabolites in both native and heterologous hosts[J]. Plant Science, 2020, 290: 110293. doi: 10.1016/j.plantsci.2019.110293 |
[32] |
史敏晶, 张世鑫, 晁金泉, 等. 橡胶树1981'IRRDB野生种质预割诱导次生乳管分化的比较分析[J]. 热带作物学报, 2022, 43(2): 303 − 310. doi: 10.3969/j.issn.1000-2561.2022.02.010 |
[33] |
ZHANG M, YANG Z, GUO D, et al. 14-3-3 proteins participate in regulation of natural rubber biosynthesis in Hevea brasiliensis[J]. Forests, 2023, 14(5): 911. doi: 10.3390/f14050911 |
[34] |
GAO L, SUN Y, WU M, et al. Physiological and proteomic analyses of molybdenum- and ethylene-responsive mechanisms in rubber latex[J]. Frontiers in Plant Science, 2018, 9: 621. doi: 10.3389/fpls.2018.00621 |
[35] |
TUNGNGOEN K, VIBOONJUN U, KONGSAWADWORAKUL P, et al. Hormonal treatment of the bark of rubber trees (Hevea brasiliensis) increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes[J]. Journal of Plant Physiology, 2011, 168(3): 253 − 262. doi: 10.1016/j.jplph.2010.06.009 |