| [1] | 杨士弘. 海南省气候特点与城市规划刍议[J]. 热带地理, 1989(4): 362 − 369. |
| [2] | 刘光琳, 谢青夏, 梁丽, 等. 蔬菜 中国最大的秋冬“菜篮子”[J]. 农家之友, 2018(12): 16 − 17. |
| [3] | 马晓春, 宋莉莉. 海南省蔬菜产业面临的挑战与机遇[J]. 农业展望, 2013, 9(7): 54 − 57. |
| [4] | HUAN Z B, LUO J H, XU Z, et al. Residues, dissipation, and risk assessment of spinosad in cowpea under open field conditions [J]. Environmental Monitoring and Assessment, 2015, 187(11): 706 − 713. doi: 10.1007/s10661-015-4942-3 |
| [5] | 刘自更, 何永东. 海南统计年鉴: 2021[M]. 北京: 中国统计出版社, 2021: 4 − 5. |
| [6] | LIU P P, JIA W T, ZHENG X, et al. Predation functional response and life table parameters of Orius sauteri (Hemiptera: Anthocoridae) feeding on Megalurothrips usitatus (Thysanoptera: Thripidae) [J]. Florida Entomologist, 2018, 101(2): 254 − 259. doi: 10.1653/024.101.0216 |
| [7] | WANG X S, SHAUKTA A, HAN Y, et al. Morphology and distribution of the antennal sensilla of two species, Megalurothrips usitatus and Thrips palmi (Thysanoptera: Thripidae) [J]. Insects, 2019, 10(8): 251 − 260. doi: 10.3390/insects10080251 |
| [8] | 夏西亚, 付步礼, 李强, 等. 蓟马类害虫诱控技术研究进展[J]. 农学学报, 2017, 7(2): 31 − 35. doi: 10.11923/j.issn.2095-4050.cjas16080010 |
| [9] | 邱海燕, 刘奎, 李鹏, 等. 豆大蓟马的生物学特性研究[J]. 热带作物学报, 2014, 35(12): 2437 − 2441. doi: 10.3969/j.issn.1000-2561.2014.12.021 |
| [10] | 李荣云, 赖廷锋, 欧李坚, 等. 合浦县豇豆蓟马危害特点及防治技术[J]. 现代农业科技, 2011(19): 211. doi: 10.3969/j.issn.1007-5739.2011.19.139 |
| [11] | 唐良德, 付步礼, 邱海燕, 等. 豆大蓟马对12种杀虫剂的敏感性测定[J]. 热带作物学报, 2015, 36(3): 570 − 574. doi: 10.3969/j.issn.1000-2561.2015.03.021 |
| [12] | 唐良德, 赵海燕, 付步礼, 等. 海南地区豆大蓟马田间种群的抗药性监测[J]. 环境昆虫学报, 2016, 38(5): 1032 − 1037. |
| [13] | 刘钦梅. 蚊虫拟除虫菊酯类杀虫剂抗性基因的研究[D]. 海口: 海南大学, 2016. |
| [14] | DONG K, DU Y Z, FRANK R, et al. Molecular biology of insect sodium channels and pyrethroid resistance [J]. Insect Biochemistry and Molecular Biology, 2014, 50(1): 1 − 17. |
| [15] | CATTERALL W A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. [J]. Neuron, 2000, 26(1): 13 − 25. doi: 10.1016/S0896-6273(00)81133-2 |
| [16] | BRACKENBURY W J, ISOM L L. Na+ channel β subunits: overachievers of the ion channel family [J]. Frontiers in Pharmacology, 2011(2): 53. |
| [17] | 吴少英, 段文波, 李芬, 等. 昆虫钠离子通道的研究进展[J]. 昆虫学报, 2021, 64(7): 862 − 874. |
| [18] | LOUGHNEY K, KREBER R, GANZTZKY B. Molecular analysis of the para locus, a sodium channel gene in Drosophila [J]. Cell, 1989, 58(6): 1143 − 1154. doi: 10.1016/0092-8674(89)90512-6 |
| [19] | LIU Z, SONG W, DONG K. Persistent tetrodotoxin-sensitive sodium current resulting from U-to-C RNA editing of an insect sodium channel [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(32): 11862 − 11867. doi: 10.1073/pnas.0307695101 |
| [20] | RIEDER L E, SAVVA Y A, REYNA M A , et al. Dynamic response of RNA editing to temperature in Drosophila[J]. BMC Biology, 2015, 13(1) . DOI: 10.1186/s12915-014-0111-3. |
| [21] | ZHANG K, CHEN M, WANG H, et al. Molecular characterization and functional expression of voltage‐gated sodium channel variants in Apolygus lucorum (Meyer‐Dür)[J]. Pest Management Science, 2020, 76(6): 2095 − 2104. |
| [22] | DUAN Y, DOU S, LUO S, et al. Adaptation of A-to-I RNA editing in Drosophila[J]. PLoS Genet, 2017, 13(3): e1006648. doi: 10.1371/journal.pgen.1006648. PMID: 28282384; PMCID: PMC5365144. |
| [23] | SONG W, LIU Z, TAN J, et al. RNA editing generates tissue-specific sodium channels with distinct gating properties [J]. Journal of Biological Chemistry, 2004, 279(31): 32554. doi: 10.1074/jbc.M402392200 |
| [24] | SEEBURG P H. A-to-I editing: new and old sites, functions and specula-tions [J]. Neuron, 2002, 35(1): 17 − 20. doi: 10.1016/S0896-6273(02)00760-2 |
| [25] | MALDONADO C, ALICEA D, GONZALEZ M, et al. Adar is essential for optimal presynaptic function [J]. Molecular and Cellular Neuroscience, 2012, 52(1): 173 − 180. |
| [26] | HANRAHAN C J, PALLADINO M J, GANETZKY B, et al. RNA editing of the Drosophila para Na+ channel transcript: evolutionary conservation and developmental regulation [J]. Genetics, 2000, 155(3): 1149 − 1160. doi: 10.1093/genetics/155.3.1149 |
| [27] | 邓登辉, 段文波, 王颢, 等. 拟果蝇钠离子通道基因克隆及其生物信息学分析[J]. 中国生物防治学报, 2021, 37(2): 340 − 348. DOI:10.16409/j.cnki.2095-039x.2021.03.012. |
| [28] | SMITH T J, LEE S H, INGES P J, et al. The L1014F point mutation in the house fly Vssc1 sodium channel confers knockdown resistance to pyrethroids. [J]. Insect Biochemistry and Molecular Biology, 1997, 27(10): 807 − 812. doi: 10.1016/S0965-1748(97)00065-9 |
| [29] | LYND A, ORUNI A, VAN'T Hof A E, et al. Insecticide resistance in Anopheles gambiae from the northern Democratic Republic of Congo, with extreme knockdown resistance (kdr) mutation frequencies revealed by a new diagnostic assay[J]. Malaria Journal, 2018, 17(1). |
| [30] | GHAVAMI M B, HAGHI F P, ALIBABAEI Z, et al. First report of target site insensitivity to pyrethroids in human flea, Pulex irritans (Siphonaptera: Pulicidae) [J]. Pesticide Biochemistry & Physiology, 2018, 146: 97 − 105. |
| [31] | QIAN W, LIU N, YANG Y, et al. A survey of insecticide resistance-conferring mutations in multiple targets in Anopheles sinensis populations across Sichuan, China [J]. Parasites & Vectors, 2021, 14(1): 169. |
| [32] | SILVA Martins W F, SIVA Pereira B N, VIEIAR Alves A T, et al. Development and application of a tri-allelic PCR assay for screening Vgsc-L1014F kdr mutations associated with pyrethroid and organochlorine resistance in the mosquito Culex quinquefasciatus [J]. Parasites & vectors, 2019, 12(1): 232. |
| [33] | LEE S H, SMITH T J, KNIPPLE D C, et al. Mutations in the house fly Vssc1 sodium channel gene associated with super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes [J]. Insect Biochemistry & Molecular Biology, 1999, 29(2): 185 − 194. |
| [34] | YAN R, ZHOU Q, XU Z, et al. Three sodium channel mutations from Aedes albopictus confer resistance to Type I, but not Type II pyrethroids[J]. Insect Biochemistry and Molecular Biology, 2020, 123: 103411. doi: 10.1016/j.ibmb.2020.103411. Epub 2020 May 22. PMID: 32450204. |
| [35] | WANG L, NOMURA Y, DU Y, et al. A Mutation in the intracellular loop III/IV of mosquito sodium channel synergizes the effect of mutations in Helix IIS6 on pyrethroid resistance [J]. Molecular Pharmacology, 2015, 87(3): 421. doi: 10.1124/mol.114.094730 |
| [36] | JOURAKU A, KUWAZAKI S, IIDA H, et al. T929I and K1774N mutation pair and M918L single mutation identified in the voltage-gated sodium channel gene of pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae) in Japan [J]. Pesticide Biochemistry & Physiology, 2019, 158: 77 − 87. |
| [37] | DU Y, NOMURA Y, SATAR G, et al. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 11785 −11790. |
| [38] | TAN J, LIU Z, TSAI T-D, et al. Novel para mutations abolish sodium channel sensitivity to pyrethroids [J]. Insect Biochemistry & Molecular Biology, 2001, 32: 445 − 454. |
| [39] | LIU Z, TAN J, VALLES S M, et al. Synergistic interaction between two cockroach sodium channel mutations and a tobacco budworm sodium channel mutation in reducing channel sensitivity to a pyrethroid insecticide [J]. Insect Biochemistry & Molecular Biology, 2002, 32(4): 397 − 404. |
| [40] | ZHAO M, DONG Y, RAN X, et al. Sodium channel point mutations associated with pyrethroid resistance in Chinese strains of Culex pipiens quinquefasciatus (Diptera: Culicidae) [J]. Parasites & Vectors, 2014, 7(1): 369. |