[1] ZHONG B, LV C, QIN W. Effectiveness of the botanical insecticide azadirachtin against Tirathaba rufivena (Lepidoptera: Pyralidae)[J]. The Florida Entomologist, 2017, 100(2): 215 − 218. doi:  10.1653/024.100.0215
[2] 钟宝珠, 吕朝军, 李朝绪, 等. 鱼藤酮对红脉穗螟的控制作用研究[J]. 中国植保导刊, 2023, 43(9): 5 − 9. doi:  10.3969/j.issn.1672-6820.2023.09.001
[3] 吕朝军, 钟宝珠, 苟志辉, 等. 鱼藤酮和茶皂素对槟榔红脉穗螟的联合毒力[J]. 生物安全学报, 2015, 24(3): 241 − 243.
[4] 吕朝军, 钟宝珠, 钱军, 等. 烟碱对槟榔红脉穗螟生长发育和存活的影响[J]. 生物安全学报, 2013, 22(3): 201 − 205.
[5] 甘炳春, 周亚奎, 杨新全, 等. 红脉穗螟寄生性天敌扁股小蜂的人工大量繁殖技术[J]. 中国森林病虫, 2011, 30(4): 29 − 30. doi:  10.3969/j.issn.1671-0886.2011.04.010
[6] 钟宝珠, 吕朝军, 李朝绪, 等. 褐带卷蛾茧蜂对不同龄期红脉穗螟幼虫的选择性和适应性[J]. 山西农业大学学报(自然科学版), 2023, 43(1): 97 − 103.
[7] 陈运雷, 闫三强, 吕宝乾, 等. 不同寄主对麦蛾柔茧蜂寄生、发育和繁殖的影响[J]. 热带农业科学, 2022, 42(4): 77 − 80. doi:  10.12008/j.issn.1009-2196.2022.04.013
[8] 钟宝珠, 孙晓东, 吕朝军, 等. 分离自红棕象甲虫尸上的绿僵菌菌株鉴定及其对红脉穗螟的致病力[J]. 中国植保导刊, 2021, 41(7): 21 − 25+47. doi:  10.3969/j.issn.1672-6820.2021.07.004
[9] 李娇, 吕朝军. 红脉穗螟天敌垫跗螋的饲养方法[J]. 热带农业科学, 2017, 37(11): 65 − 68.
[10] 李爱国, 许莉, 刘晓娜. 双性引诱剂对稻纵卷叶螟成虫的诱杀效果研究[J]. 现代农业科技, 2021(23): 84 − 85. doi:  10.3969/j.issn.1007-5739.2021.23.034
[11] 易松望, 李晓维, 陈利民, 等. 番茄潜叶蛾食物源引诱剂筛选及引诱效果评估[J]. 昆虫学报, 2024, 67(12): 1671 − 1683.
[12] 张博军, 李依然, 韦肖红, 等. 桃园中梨小食心虫的引诱剂及诱捕器改进[J]. 中国生物防治学报, 2025, 41(1): 71 − 79.
[13]

KARLSSON M F, PROFFIT M, BIRGERSSON G. Host-plant location by the Guatemalan potato moth Tecia solanivora is assisted by floral volatiles[J]. Chemoecology, 2017, 27(5): 187 − 198. doi:  10.1007/s00049-017-0244-2
[14]

BAI P H, WANG H M, LIU B S, et al. Botanical volatiles selection in mediating electrophysiological responses and reproductive behaviors for the fall webworm moth Hyphantria cunea[J]. Frontiers in Physiology, 2020, 11: 486. doi:  10.3389/fphys.2020.00486
[15]

WEI H S, QIN J H, CAO Y Z, et al. Two classic OBPs modulate the responses of female to three major ester host plant volatiles[J]. Insect Molecular Biology, 2021, 30(4): 390 − 399. doi:  10.1111/imb.12703
[16]

ARIMURA G, MATSUI K, TAKABAYASHI J. Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions[J]. Plant and Cell Physiology, 2009, 50(5): 911 − 923. doi:  10.1093/pcp/pcp030
[17]

LEAL W S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes[J]. Annual Review of Entomology, 2013, 58(1): 373 − 391. doi:  10.1146/annurev-ento-120811-153635
[18]

KAUPP U B. Olfactory signalling in vertebrates and insects: differences and commonalities[J]. Nature Reviews Neuroscience, 2010, 11(3): 188 − 200. doi:  10.1038/nrn2789
[19]

ZHOU J J, ZHANG G A, HUANG W, et al. Revisiting the odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination[J]. Febs Letters, 2004, 558(1-3): 23 − 26. doi:  10.1016/S0014-5793(03)01521-7
[20] 张林雅. 美洲斑潜蝇气味结合蛋白鉴定及功能研究[D]. 北京: 中国农业科学院, 2017.
[21] 常向前. 东方粘虫性信息素结合蛋白(MsepPBPs)鉴定, 表达及功能分析[D]. 武汉 : 华中农业大学, 2020.
[22] 吴少英, 王桂荣, 吴孔明, 等. 烟青虫气味结合蛋白基因的克隆与序列分析[J]. 中国农业科学, 2005, 38(9): 8. doi:  10.3321/j.issn:0578-1752.2005.09.016
[23]

LIU X L, WU Z R, LIAO W, et al. The binding affinity of two general odorant binding proteins in Spodoptera frugiperda to general volatiles and insecticides[J]. International Journal of Biological Macromolecules, 2023, 252: 126338. doi:  10.1016/j.ijbiomac.2023.126338
[24]

LI L L, XU B Q, LI C Q, et al. Different binding affinities of three general odorant-binding proteins in Grapholita funebrana (Treitscheke) (Lepidoptera: Tortricidae) to sex pheromones, host plant volatiles, and insecticides[J]. Journal of Economic Entomology, 2022, 115(4): 1129 − 1145. doi:  10.1093/jee/toac063
[25]

ZHANG X Q, PURBA E R, SUN J, et al. Functional differentiation of two general-odorant binding proteins in Hyphantria cunea (Drury) (Lepidoptera: Erebidae)[J]. Pest Management Science, 2023, 79(9): 3312 − 3325. doi:  10.1002/ps.7515
[26]

MA Y, LI Y, WEI Z Q, et al. Identification and functional characterization of general odorant binding proteins in Orthaga achatina[J]. Insects, 2023, 14(3): 216. doi:  10.3390/insects14030216
[27]

ZHANG X Q, YAN Q, LI L L, et al. Different binding properties of two general-odorant binding proteins in Athetis lepigone with sex pheromones, host plant volatiles and insecticides[J]. Pesticide Biochemistry and Physiology, 2020, 164: 173 − 182. doi:  10.1016/j.pestbp.2020.01.012
[28]

YIN N N, YANG A J, WU C, et al. Genome-wide analysis of odorant-binding proteins in Papilio xuthus with focus on the perception of two PxutGOBPs to host odorants and insecticides[J]. Journal of Agricultural and Food Chemistry, 2022, 70(35): 10747 − 10761. doi:  10.1021/acs.jafc.2c03396
[29]

JING D P, ZHANG T T, PRABU S, et al. Molecular characterization and volatile binding properties of pheromone binding proteins and general odorant binding proteins in Conogethes pinicolalis (Lepidoptera: Crambidae)[J]. International Journal of Biological Macromolecules, 2020, 146: 263 − 272. doi:  10.1016/j.ijbiomac.2019.12.248
[30] 王正. 红脉穗螟性信息素识别机制研究与应用初步[D]. 海口: 海南大学, 2022.
[31]

ZHOU X, WANG Z, CUI G C, et al. Binding properties of odorant-binding protein 4 of Tirathaba rufivena to Areca catechu volatiles[J]. Plants-Basel, 2022, 11(2): 167. doi:  10.3390/plants11020167
[32] 白春秀, 周祥, 郭技星, 等. 中对长小蠹PparOBP1基因的序列分析与原核表达[J]. 基因组学与应用生物学, 2021, 40(Z4): 3396 − 3403.
[33] 杨岭, 田晓丽, 桂连友, 等. 柑橘大实蝇气味结合蛋白BminOBP6与其气味配体的互作机制[J]. 中国农业科学, 2023, 56(7): 1311 − 1321. doi:  10.3864/j.issn.0578-1752.2023.07.009
[34] 许冲. 班氏跳小蜂气味结合蛋白嗅觉功能分析[D]. 武汉: 华中农业大学, 2020.
[35] 严玉婷, 吴帆, 张亚丽, 等. 茶尺蠖触角高丰度气味结合蛋白EoblOBP9、EoblOBP11的配基结合功能和模式差异研究[J]. 茶叶科学, 2021, 41(5): 643 − 653. doi:  10.3969/j.issn.1000-369X.2021.05.005
[36] 唐浩宇, 刘靖涛, 谢佼昕, 等. 多异瓢虫气味结合蛋白HvarOBP2的基因克隆及配体结合特性分析[J]. 昆虫学报, 2022, 65(8): 977 − 985.
[37]

ZHAN Y D, LIU Y J, LIU J H, et al. Pheromones emitted by both female and male moths regulate coordination between the sexes for Agriphila aeneociliella (Lepidoptera: Crambidae)[J]. Insect Science, 2023, 30(5): 1481 − 1492. doi:  10.1111/1744-7917.13171
[38]

WANG C, ZHANG S, GUO M-B, et al. Optimization of a pheromone lure by analyzing the peripheral coding of sex pheromones of Spodoptera frugiperda in China[J]. Pest Management Science, 2022, 78(7): 2995 − 3004. doi:  10.1002/ps.6924
[39] 吴健, 张贺贺, 杨燕川, 等. 一种桔小实蝇Minus-C气味结合蛋白的分子克隆和结合特征分析[J]. 江西农业大学学报, 2018, 40(2): 389 − 398.
[40] 李亚伟, 张小菊, 王科珂, 等. 枣实蝇气味结合蛋白基因的克隆及表达谱分析[J]. 新疆农业科学, 2017, 54(2): 313 − 319. doi:  10.6048/j.issn.1001-4330.2017.02.014
[41]

ZHENG Z-C, LI D-Z, ZHOU A, et al. Predicted structure of a Minus-C OBP from Batocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs[J]. Scientific Reports, 2016, 6(1): 33981. doi:  10.1038/srep33981
[42]

SPINELLI S, LAGARDE A, IOVINELLA I, et al. Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules[J]. Insect Biochemistry and Molecular Biology, 2012, 42(1): 41 − 50. doi:  10.1016/j.ibmb.2011.10.005
[43]

LI Z-Q, ZHANG S, LUO J-Y, et al. Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH[J]. Journal of Insect Physiology, 2013, 59(3): 263 − 272. doi:  10.1016/j.jinsphys.2012.12.004
[44]

VIEIRA F G, ROZAS J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the arthropoda: origin and evolutionary history of the chemosensory system[J]. Genome Biology and Evolution, 2011, 3: 476 − 490. doi:  10.1093/gbe/evr033
[45] 魏丹, 叶占峰, 高建清, 等. 二化螟Minus-C气味结合蛋白的分子克隆及功能鉴定[J]. 昆虫学报, 2013, 56(7): 754 − 764.
[46] 陈秀琳, 苏丽, 陈丽慧, 等. 梨小食心虫Minus-C气味结合蛋白的分子克隆、表达谱及结合特性分析[J]. 昆虫学报, 2018, 61(7): 771 − 783.
[47]

QU Y, LIU X, ZHAO X, et al. Evidence of the involvement of a Plus-C odorant-binding protein HparOBP14 in host plant selection and oviposition of the scarab beetle Holotrichia parallela[J]. Insects, 2021, 12(5): 430. doi:  10.3390/insects12050430
[48] 都梓萌. 红脉穗螟气味结合蛋白TrufOBP1和TrufOBP7基因克隆及功能初探[D]. 海口: 海南大学, 2023.
[49]

SASAERILA Y H, GRIES R, GRIES G, et al. Sex pheromone components of male Tirathaba mundella (Lepidoptera: Pyralidae)[J]. Chemoecology, 2003, 13: 89 − 93. doi:  10.1007/s00049-003-0233-5
[50]

LAVOGEZ O, PINIER C, NIBOUCHE S, et al. Volatile compounds release by the hair pencils in male Prophantis smaragdina (Lepidoptera: Crambidae: Spilomelinae)[J]. Journal of Insect Science, 2017, 17(6): 171.
[51]

LEAL W S, BARBOSA R M R, XU W, et al. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex Mosquitoes[J]. PLOS ONE, 2008, 3(8): e3045. doi:  10.1371/journal.pone.0003045
[52]

ZHU J, BAN L, SONG L-M, et al. General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food[J]. Insect Biochemistry and Molecular Biology, 2016, 72: 10 − 19. doi:  10.1016/j.ibmb.2016.03.005