[1] LUO J J, LIU Y X, ZHANG H K, et al. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency [J]. BMC Plant Biology, 2020, 20(2): 3 − 22.
[2] 董荣书, 张洁, 陈志坚, 等. 热研2号柱花草接种不同根瘤菌最适钼浓度的研究[J]. 热带生物学报, 2017, 8(2): 203 − 208.
[3] 郑丽, 易小平, 文衍堂, 等. 海南省热带牧草病害调查及病原菌初步鉴定[J]. 热带作物学报, 2014, 35(5): 967 − 973. doi:  10.3969/j.issn.1000-2561.2014.05.023
[4] 易克贤, 郑金龙, 贺春萍, 等. 柱花草胶孢炭疽菌致病类型分析[J]. 热带农业科学, 2014, 34(5): 62 − 68. doi:  10.3969/j.issn.1009-2196.2014.05.013
[5]

IRWIN J, CAMERON D F. Two diseases in Stylosanthes spp. caused by Colletotrichum gloeosporioides in Australia, and pathogenic specialization within one of the causal organisms [J]. Australian Journal of Agricultural Research, 1978, 29(2): 305 − 317. doi:  10.1071/AR9780305
[6]

STEPHENSON S A, HATFIELD J, RUSU A G, et al. CgDN3: An essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in host Stylosanthes guianensis [J]. Molecular Plant-Microbe Interactions, 2000, 13(9): 929 − 941. doi:  10.1094/MPMI.2000.13.9.929
[7]

TANAKA S, YAMADA K, YABUMOTO K, et al. Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea [J]. Molecular Microbiology, 2007, 64: 1332 − 1349. doi:  10.1111/j.1365-2958.2007.05742.x
[8]

GAN P, IKEDA K, IRIEDA H, et al. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi [J]. New Phytologist, 2013, 197(4): 1236 − 1249. doi:  10.1111/nph.12085
[9]

JIA Y X, YANG M X, WANG H, et al. First report of anthracnose on Stylosanthes guianensis caused by Colletotrichum karstii in China [J]. Plant Disease, 2017, 101(4): 630.
[10]

JOHN R, ANJUM N A, SOPORY S K, et al. Some key physiological and molecular processes of cold acclimation [J]. Biologia Plantarum, 2016, 60(4): 603 − 618. doi:  10.1007/s10535-016-0648-9
[11]

ZHAO H F, NI S J, CAI S G, et al. Comprehensive dissection of primary metabolites in response to diverse abiotic stress in barley at seedling stage [J]. Plant Physiology and Biochemistry, 2021, 161(6): 54 − 64.
[12]

WANG P K, DONG Y N, ZHU L M, et al. The role of γ-aminobutyric acid in aluminum stress tolerance in a woody plant, Liriodendron chinense × tulipifera [J]. Horticulture Research, 2021, 8(1): 80. doi:  10.1038/s41438-021-00517-y
[13] 何小龙, 季学军, 裴洲洋, 等. β−氨基丁酸诱导烟草抗烟草花叶病毒的研究[J]. 合肥工业大学学报, 2015, 38(11): 1547 − 1552.
[14] 艾丹, 郭春华, 徐亚欧, 等. 四川阿坝县秋季牧草钙磷等矿物元素特征及其与土壤钙磷含量的关系[J]. 草地学报, 2011, 19(6): 1060 − 1063. doi:  10.11733/j.issn.1007-0435.2011.06.029
[15]

WANG H, CHEN Z J, LIU G D, et al. Alterations of growth, antioxidant system and gene expression in Stylosanthes guianensis during Colletotrichum gloeosporioides infection [J]. Plant Physiology and Biochemistry, 2017, 118: 256 − 266. doi:  10.1016/j.plaphy.2017.06.024
[16] 刘祚军, 黄胜威, 李明浩, 等. 拟南芥铜锌超氧化物歧化酶解聚的中间态性质[J]. 生物学杂志, 2020, 37(6): 51 − 54. doi:  10.3969/j.issn.2095-1736.2020.06.051
[17] 裴斐, 陶虹伶, 蔡丽娟, 等. 响应面试验优化辣木叶多酚超声辅助提取工艺及其抗氧化活性[J]. 食品科学, 2016, 37(20): 24 − 30. doi:  10.7506/spkx1002-6630-201620005
[18] 陈茂霞, 周后珍, 朱晓华, 等. 考马斯亮蓝法检测活性污泥中蛋白质含量优化[J]. 环境科学与技术, 2015, 38(4): 1 − 5.
[19] 王馨雨, 王蓉蓉, 王婷, 等. 不同品种百合内外鳞片游离氨基酸组成的主成分分析及聚类分析[J]. 食品科学, 2020, 41(12): 211 − 220. doi:  10.7506/spkx1002-6630-20190709-117
[20]

BIGGS A R. Effects of calcium salts on apple bitter rot caused by two Colletotrichum spp [J]. Plant disease, 1999, 11(11): 1001 − 1005.
[21]

CHEN S S, ZHAO H, DING G D, et al. Genotypic differences in antioxidant response to phosphorus deficiency in Brassica napus [J]. Plant and Soil, 2015, 391: 19 − 32. doi:  10.1007/s11104-015-2395-7
[22]

ZHANG X B, LIU C J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids [J]. Molecular Plant, 2015(8): 17 − 27.
[23] 邢芳芳, 高明夫, 周传志, 等. 氨基酸与植物抗逆性关系的研究进展[J]. 黑龙江农业科学, 2018(3): 150 − 154.
[24] 单治国, 张春花, 满红平, 等. 茶饼病侵染对茶树游离氨基酸组分及含量的影响[J]. 现代食品科技, 2017, 33(5): 240 − 318.
[25] 李亚莉, 侯栋, 岳宏忠, 等. 尖孢镰孢菌对抗病和感病黄瓜幼苗生长及叶片游离氨基酸的影响[J]. 中国农业科技导报, 2019, 21(11): 94 − 102.
[26] 姚锦爱, 余德亿, 黄鹏, 等. 墨兰品种健叶与感染胶孢炭疽菌病叶的表面结构及氨基酸含量比较[J]. 西北农林科技大学学报(自然科学版), 2014, 42(12): 63 − 70.
[27]

YUN Z, ZHU F, LIU P, et al. Sweating treatment enhances citrus fruit disease resistance by inducing the accumulation of amino acids and salicylic acid-induced resistance pathway [J]. Physiologia Plantarum, 2015, 155(2): 109 − 125. doi:  10.1111/ppl.12340
[28] 刘丽萍, 高洁, 李玉. 植物炭疽菌属Colletotrichum真菌研究进展[J]. 菌物研究, 2020, 18(4): 266 − 281.