[1] |
路纪芳, 蔡静芸, 陈乾, 等. 我国橘小实蝇危害习性及防治技术研究进展[J]. 中国森林病虫, 2023, 42(6): 28 − 32. |
[2] |
CLARKE A R, ARMSTRONG K F, CARMICHAEL A E, et al. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies[J]. Annual review of entomology, 2005, 50: 293 − 319. doi: 10.1146/annurev.ento.50.071803.130428 |
[3] |
WAN X, NARDI F, ZHANG B, et al. The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth[J]. PLoS One, 2011, 6(10): e25238. doi: 10.1371/journal.pone.0025238 |
[4] |
LIU H, ZHANG D J, XU YI-JUAN, et al. Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China[J]. Journal of Integrative Agriculture, 2019, 18(4): 771 − 787. doi: 10.1016/S2095-3119(18)62015-5 |
[5] |
CHRISTENSON L D, FOOTE R H. Biology of fruit flies[J]. Annual review of entomology, 1960, 5: 171 − 192. doi: 10.1146/annurev.en.05.010160.001131 |
[6] |
方薛交, 闫振华, 张金龙, 等. 桔小实蝇成虫对不同水果的产卵为害特点及种群动态[J]. 云南农业大学学报(自然科学), 2017, 32(2): 212 − 217. |
[7] |
ONO H, HEE A K, JIANG H. Recent Advancements in Studies on Chemosensory Mechanisms Underlying Detection of Semiochemicals in Dacini Fruit Flies of Economic Importance (Diptera: Tephritidae)[J]. Insects, 2021, 12(2): 106. doi: 10.3390/insects12020106 |
[8] |
宁昭玉. 桔小实蝇对福建省危害的经济损失评估与风险评价[D]. 福州: 福建农林大学, 2008. |
[9] |
黄焕光. 广东省果实蝇调查及桔小实蝇经济安全评估[D]. 广州: 华南农业大学, 2010. |
[10] |
闫凯莉, 唐良德, 吴建辉, 等. 诱杀技术在害虫综合治理(IPM)中的应用[J]. 中国植保导刊, 2016, 36(6): 17 − 25. doi: 10.3969/j.issn.1672-6820.2016.06.004 |
[11] |
蔡晓明, 李兆群, 潘洪生, 等. 植食性害虫食诱剂的研究与应用[J]. 中国生物防治学报, 2018, 34(1): 8 − 35. |
[12] |
张杰, 张艳, 刘伟, 等. 橘小实蝇化学通讯机制与引诱剂开发策略[J]. 昆虫学报, 2023, 66(1): 108 − 120. |
[13] |
ALLWOOD A J, VUETI E T, LEBLANC L, et al. Eradication of introduced Bactrocera species (Diptera: Tephritidae) in Nauru using male annihilation and protein bait application techniques[C]// C. R. Veitch, M. N. Clout, et al. Turning the Tide: The Eradication of Invasive Species. Gland, Switzerland: IUCN-The World Conservation Union, 2003: 19 − 25. |
[14] |
BENELLI G, DAANE K M, CANALE A, et al. Sexual communication and related behaviours in Tephritidae: Current knowledge and potential applications for integrated pest management[J]. Journal of Pest Science, 2014, 87(3): 385 − 405. doi: 10.1007/s10340-014-0577-3 |
[15] |
FLATH R A, MATSUMOTO K E, BINDER R G, et al. Effect of pH on the volatiles of hydrolyzed protein insect baits[J]. Journal of agricultural and food chemistry, 1989, 37(3): 814 − 819. doi: 10.1021/jf00087a053 |
[16] |
DUYCK P F, ROUSSE P, RYCKEWAERT P, et al. Influence of adding borax and modifying pH on effectiveness of food attractants for melon fly (Diptera: Tephritidae)[J]. Journal of Economic Entomology, 2004, 97(3): 1137 − 1141. doi: 10.1093/jee/97.3.1137 |
[17] |
VARGAS R I, PROKOPY R. Attraction and feeding responses of melon flies and oriental fruit flies (Diptera: Tephritidae) to various protein baits with and without toxicants[J]. Proc. Hawaii. Entomol. Soc., 2006, 38: 49 − 60. |
[18] |
BRUCE T J A, WADHAMS L J, WOODCOCK C M. Insect host location: A volatile situation[J]. Trends in plant science, 2005, 10(6): 269 − 274. doi: 10.1016/j.tplants.2005.04.003 |
[19] |
杜立啸, 刘杨, 王桂荣. 昆虫外周嗅觉系统信号转导机制研究进展[J]. 中国科学: 生命科学, 2016, 46(5): 573 − 583. |
[20] |
RUTA V, DATTA S R, VASCONCELOS M L, et al. A dimorphic pheromone circuit in Drosophila from sensory input to descending output[J]. Nature, 2010, 468(7324): 686 − 690. doi: 10.1038/nature09554 |
[21] |
BATES A S, SCHLEGEL P, ROBERTS R J V, et al. Complete connectomic reconstruction of olfactory projection neurons in the fly brain[J]. Current biology, 2020, 30(16): 3183 − 3199.e6. doi: 10.1016/j.cub.2020.06.042 |
[22] |
刘伟, 王桂荣. 昆虫嗅觉中枢系统对外周信号的整合编码研究进展[J]. 昆虫学报, 2020, 63(12): 1536 − 1545. |
[23] |
WU Z Z, ZHANG H, WANG Z B, et al. Discovery of chemosensory genes in the oriental fruit fly, Bactrocera dorsalis[J]. PLoS ONE, 2015, 10(6): e0129794. doi: 10.1371/journal.pone.0129794 |
[24] |
WU Z Z, CUI Y, MA J, et al. Analyses of chemosensory genes provide insight into the evolution of behavioral differences to phytochemicals in Bactrocera species[J]. Molecular Phylogenetics and Evolution, 2020, 151: 106858. doi: 10.1016/j.ympev.2020.106858 |
[25] |
LIU Z, SMAGGHE G, LEI Z R, et al. Identification of male- and female-specific olfaction genes in antennae of the oriental fruit fly (Bactrocera dorsalis)[J]. PLoS ONE, 2016, 11(2): e0147783. doi: 10.1371/journal.pone.0147783 |
[26] |
ZHAO Z L, TIAN D, MCBRIDE C S. Development of a pan-neuronal genetic driver in Aedes aegypti mosquitoes[J]. Cell Reports Methods, 2021, 1(3): 100042. doi: 10.1016/j.crmeth.2021.100042 |
[27] |
LEYVA-DíAZ E, HOBERT O. Robust regulatory architecture of pan-neuronal gene expression[J]. Current biology, 2022, 32(8): 1715 − 1727.e8. doi: 10.1016/j.cub.2022.02.040 |
[28] |
WAGH D A, RASSE T M, ASAN E, et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila[J]. Neuron, 2006, 49(6): 833. doi: 10.1016/j.neuron.2006.02.008 |
[29] |
RIABININA O, LUGINBUHL D, MARR E, et al. Improved and expanded Q-system reagents for genetic manipulations[J]. Nature methods, 2015, 12(3): 219 − 222. doi: 10.1038/nmeth.3250 |
[30] |
KONOPKA J K, TASK D, POINAPEN D, et al. Neurogenetic identification of mosquito sensory neurons[J]. iScience, 2023, 26(5): 106690. doi: 10.1016/j.isci.2023.106690 |
[31] |
SWEENEY S T, BROADIE K, KEANE J, et al. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects[J]. Neuron, 1995, 14(2): 341 − 351. doi: 10.1016/0896-6273(95)90290-2 |
[32] |
DEITCHER D L, UEDA A, STEWART B A, et al. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin[J]. Journal of Neuroscience, 1998, 18(6): 2028 − 39. doi: 10.1523/JNEUROSCI.18-06-02028.1998 |
[33] |
CHEN Y, HU S, WU X, et al. Synaptotagmin-1 is a bidirectional Ca2+ sensor for neuronal endocytosis[J]. PNAS, 2022, 119(20): e2111051119. doi: 10.1073/pnas.2111051119 |
[34] |
YAO K, SAMSON M, REEVES R, et al. Gene elav of Drosophila melanogaster: a prototype for neuronal-specific RNA binding protein gene family that is conserved in flies and humans[J]. Developmental Neurobiology, 1993, 24(6): 723 − 739. doi: 10.1002/neu.480240604 |
[35] |
CARRASCO J, MATEOS F, HILGERS V. A critical developmental window for ELAV/Hu-dependent mRNA signatures at the onset of neuronal differentiation[J]. Cell reports, 2022, 41(4): 111542. doi: 10.1016/j.celrep.2022.111542 |
[36] |
EMMS DM, KELLY S. OrthoFinder: phylogenetic orthology inference for comparative genomics[J]. Genome biology, 2019, 20(1): 238. doi: 10.1186/s13059-019-1832-y |
[37] |
KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution., 2013, 30(4): 772 − 780. doi: 10.1093/molbev/mst010 |
[38] |
MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era[J]. Molecular Biology and Evolution., 2020, 37(5): 1530 − 1534. doi: 10.1093/molbev/msaa015 |
[39] |
WANG M, KONG L. pblat: A multithread blat algorithm speeding up aligning sequences to genomes[J]. BMC Bioinform., 2019, 20(1): 28. doi: 10.1186/s12859-019-2597-8 |
[40] |
YAMADA T. 7bgzf: Replacing samtools bgzip deflation for archiving and real-time compression[J]. Computational Biology and Chemistry, 2020, 85: 107207. doi: 10.1016/j.compbiolchem.2020.107207 |
[41] |
KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nature biotechnology, 2019, 37(8): 907 − 915. doi: 10.1038/s41587-019-0201-4 |
[42] |
SHUMATE A, WONG B, PERTEA G, et al. Improved transcriptome assembly using a hybrid of long and short reads with StringTie[J]. PLoS Computational Biology, 2022, 18(6): e1009730. doi: 10.1371/journal.pcbi.1009730 |
[43] |
ROBINSON J T, THORVALDSDOTTIR H, TURNER D, et al. igv. js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV)[J]. Bioinformatics., 2023, 39(1): btac830. doi: 10.1093/bioinformatics/btac830 |
[44] |
LIAO Y, SMYTH G K, SHI W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics., 2014, 30(7): 923 − 930. doi: 10.1093/bioinformatics/btt656 |
[45] |
ROBERTSON H M, WARR C G, CARLSON J R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster[J]. PNAS, 2003, 100(Suppl 2): 14537 − 14542. |
[46] |
VOSSHALL L B, STOCKER R F. Molecular architecture of smell and taste in Drosophila[J]. Annual review of neuroscience, 2007, 30: 505 − 533. doi: 10.1146/annurev.neuro.30.051606.094306 |
[47] |
DAVIS F P, NERN A, PICARD S, et al. A genetic, genomic, and computational resource for exploring neural circuit function[J]. E-life, 2020, 9: e50901. |
[48] |
SANFILIPPO P, SMIBERT P, DUAN H, et al. Neural specificity of the RNA-binding protein Elav is achieved by post-transcriptional repression in non-neural tissues[J]. Development, 2016, 143(23): 4474 − 4485. doi: 10.1242/dev.141978 |
[49] |
LUO L, LIAO Y J, JAN L Y, et al. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion[J]. Genes and development, 1994, 8(15): 1787 − 1802. doi: 10.1101/gad.8.15.1787 |
[50] |
PAULI A, ALTHOFF F, OLIVEIRA R A, et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons[J]. Developmental cell, 2008, 14(2): 239 − 251. doi: 10.1016/j.devcel.2007.12.009 |
[51] |
CARCAUD J, OTTE M, GRüNEWALD B, et al. Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee[J]. PLoS Biology, 2023, 21(1): e3001984. doi: 10.1371/journal.pbio.3001984 |