[1] 邵鹏程, 赵峰, 张男吉, 等. 木薯渣饲料的营养特性及其在畜禽养殖中的应用研究进展[J]. 中国畜牧杂志, 2023, 59(10): 36−41. https://doi.org/10.19556/j.0258-7033.20220812-03 doi:  10.19556/j.0258-7033.20220812-03
[2] 黄慧德, 刘恩平, 刘海清, 等. 木薯产业可持续发展的途径与存在问题[J]. 热带农业科学, 2012, 32(2): 84−87. https://doi.org/10.3969/j.issn.1009-2196.2012.02.019 doi:  10.3969/j.issn.1009-2196.2012.02.019
[3] 陈若曦, 何会班, 赵业华, 等. 小麦秸秆高浓度厌氧梯度预发酵的中试研究[J]. 中国沼气, 2024, 42(5): 13−22. https://doi.org/10.20022/j.cnki.1000-1166.20240828 doi:  10.20022/j.cnki.1000-1166.20240828
[4]

Zhang J Q, Wang Q F, Yu H M, et al. Metagenomic insights into protein degradation mechanisms in natural fermentation of cassava leaves [J]. Bioresource Technology, 2024, 396: 130433. https://doi.org/10.1016/j.biortech.2024.130433 doi:  10.1016/j.biortech.2024.130433
[5]

Chantawan N, Moungprayoon A, Lunprom S, et al. High-solid dark fermentation of cassava pulp and cassava processing wastewater for hydrogen production [J]. International Journal of Hydrogen Energy, 2022, 47(96): 40672−40682. https://doi.org/10.1016/j.ijhydene.2022.09.106 doi:  10.1016/j.ijhydene.2022.09.106
[6] 柳金虎, 张箭, 张云杰, 等. 中温条件下驴粪厌氧消化产甲烷潜力及特性分析[J]. 中国沼气, 2024, 42(6): 34−40. https://doi.org/10.20022/j.cnki.1000-1166.2024060034 doi:  10.20022/j.cnki.1000-1166.2024060034
[7]

Cao Y, Zhang H X, Du H, et al. Microorganisms and metabolic characteristics of temperature-dependent fermentation during sauce-flavor Baijiu production [J]. Food Bioscience, 2025, 63: 105787. https://doi.org/10.1016/j.fbio.2024.105787 doi:  10.1016/j.fbio.2024.105787
[8]

Mutezo G, Mulopo J. A review of Africa’s transition from fossil fuels to renewable energy using circular economy principles [J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110609. https://doi.org/10.1016/j.rser.2020.110609 doi:  10.1016/j.rser.2020.110609
[9] 黄开明, 赵立欣, 冯晶, 等. 复合微生物预处理玉米秸秆提高其厌氧消化产甲烷性能[J]. 农业工程学报, 2018, 34(16): 184−189. https://doi.org/10.11975/j.issn.1002-6819.2018.16.024 doi:  10.11975/j.issn.1002-6819.2018.16.024
[10]

Pastor-Poquet V, Papirio S, Trably E, et al. High-solids anaerobic digestion requires a trade-off between total solids, inoculum-to-substrate ratio and ammonia inhibition [J]. International Journal of Environmental Science and Technology, 2019, 16(11): 7011−7024. https://doi.org/10.1007/s13762-019-02264-z doi:  10.1007/s13762-019-02264-z
[11]

Cheng L, Qiu T L, Li X, et al. Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China [J]. FEMS Microbiology Letters, 2008, 285(1): 65−71. https://doi.org/10.1111/j.1574-6968.2008.01212.x doi:  10.1111/j.1574-6968.2008.01212.x
[12]

Yi J, Dong B, Jin J W, et al. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis [J]. PLoS One, 2014, 9(7): e102548. https://doi.org/10.1371/journal.pone.0102548 doi:  10.1371/journal.pone.0102548
[13]

Lukitawesa, Patinvoh R J, Millati R, et al. Factors influencing volatile Fatty Acids production from Food Wastes via anaerobic digestion [J]. Bioengineered, 2020, 11(1): 39−52. https://doi.org/10.1080/21655979.2019.1703544 doi:  10.1080/21655979.2019.1703544
[14]

Conrad R. Methane production in soil environments-anaerobic biogeochemistry and microbial life between flooding and desiccation [J]. Microorganisms, 2020, 8(6): 881. https://doi.org/10.3390/microorganisms8060881 doi:  10.3390/microorganisms8060881
[15] 袁京群, 康达, 毛伟华, 等. 温度和储存基质对储存后厌氧颗粒污泥特性的影响[J]. 环境科学学报, 2018, 38(7): 2622−2631. https://doi.org/10.13671/j.hjkxxb.2018.0041 doi:  10.13671/j.hjkxxb.2018.0041
[16]

Ur Rehman M L, Iqbal A, Chang C C, et al. Anaerobic digestion [J]. Water Environment Research, 2019, 91(10): 1253−1271. https://doi.org/10.1002/wer.1219 doi:  10.1002/wer.1219
[17]

Yang J, Zhang J, Du X, et al. Ammonia inhibition in anaerobic digestion of organic waste: a review [J]. International Journal of Environmental Science and Technology, 2025, 22(5): 3927−3942. https://doi.org/10.1007/s13762-024-06029-1 doi:  10.1007/s13762-024-06029-1
[18] 王晓鑫, 王建, 马峰, 等. 中高温鸡粪厌氧消化微生物调节机制对比及耐热机理研究[J]. 环境保护科学, 2023, 49(4): 74−84. https://doi.org/10.16803/j.cnki.issn.1004−6216.202303048 doi:  10.16803/j.cnki.issn.1004−6216.202303048
[19]

Sunar N M, Stentiford E L, Stewart D I, et al. The process and pathogen behavior in composting: a review [J]. arXiv: Quantitative Methods. , 2014, doi:10.48550/arXiv.1404.5210 (查阅网上资料,不确定本条文献类型与格式,请确认)
[20]

Yin F B, Li Z F, Hou S, et al. The influence of total solid and inoculum ratio on thermophilic anaerobic digestion of waste activated sludge [J]. Advanced Materials Research, 2014, 878: 670−678. https://doi.org/10.4028/www.scientific.net/AMR.878.670 doi:  10.4028/www.scientific.net/AMR.878.670
[21]

Wang Q H, Liang Y, Zhao P, et al. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study [J]. Scientific Reports, 2016, 6: 38245. https://doi.org/10.1038/srep38245 doi:  10.1038/srep38245
[22] 苗荪, 陈磊, 左剑恶. 环境中抗生素抗性基因丰度与抗生素和重金属含量的相关性分析: 基于Web of Science数据库检索[J]. 环境科学, 2021, 42(10): 4925−4932. https://doi.org/10.13227/j.hjkx.202101043 doi:  10.13227/j.hjkx.202101043
[23] 朱金杰, 邹楠, 钟寰, 等. 富营养化巢湖沉积物溶解性有机质光谱时空分布特征及其环境意义[J]. 环境科学学报, 2020, 40(7): 2528−2538. https://doi.org/10.13671/j.hjkxxb.2020.0051 doi:  10.13671/j.hjkxxb.2020.0051
[24] 石玉飞, 李胜楠, 耿金菊, 等. 发酵制药废水二级出水中溶解性有机物特性分析[J]. 环境科学学报, 2021, 41(5): 1901−1909. https://doi.org/10.13671/j.hjkxxb.2020.0364 doi:  10.13671/j.hjkxxb.2020.0364
[25] 邵一奇, 王电站, 颜成, 等. 厌氧消化对猪场废水中溶解性和颗粒态有机物的组成与性质的影响[J]. 南京农业大学学报, 2019, 42(4): 713−720. https://doi.org/10.7685/jnau.201810031 doi:  10.7685/jnau.201810031
[26]

Loughrin J H, Parekh R R, Agga G E, et al. Microbiome diversity of anaerobic digesters is enhanced by microaeration and low frequency sound [J]. Microorganisms, 2023, 11(9): 2349. https://doi.org/10.3390/microorganisms11092349 doi:  10.3390/microorganisms11092349
[27] 张鑫, 高爱武, 黄雅娟, 等. 酵母菌与乳酸菌共培养发酵马铃薯渣的研究[J]. 食品工业科技, 2012, 33(1): 194−197. https://doi.org/10.13386/j.issn1002-0306.2012.01.061 doi:  10.13386/j.issn1002-0306.2012.01.061
[28]

Lee S S, Hsu J T, Mantovani H C, et al. The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro [J]. FEMS Microbiology Letters, 2002, 217(1): 51−55. https://doi.org/10.1111/j.1574-6968.2002.tb11455.x doi:  10.1111/j.1574-6968.2002.tb11455.x
[29]

Dong L L, Cao G L, Guo X Z, et al. Efficient biogas production from cattle manure in a plug flow reactor: a large scale long term study [J]. Bioresource Technology, 2019, 278: 450−455. https://doi.org/10.1016/j.biortech.2019.01.100 doi:  10.1016/j.biortech.2019.01.100
[30]

Wirth R, Kádár G, Kakuk B, et al. The planktonic core microbiome and core functions in the cattle rumen by next generation sequencing [J]. Frontiers in Microbiology, 2018, 9: 2285. https://doi.org/10.3389/fmicb.2018.02285 doi:  10.3389/fmicb.2018.02285
[31] 金巍, 刘军花, 李袁飞, 等. 甲烷菌对厌氧真菌不同碳源代谢的影响[J]. 微生物学报, 2017, 57(7): 1106−1111. https://doi.org/10.13343/j.cnki.wsxb.20160453 doi:  10.13343/j.cnki.wsxb.20160453
[32]

Bräuer S L, Basiliko N, Siljanen H M P, et al. Methanogenic Archaea in peatlands [J]. FEMS Microbiology Letters, 2020, 367(20): fnaa172. https://doi.org/10.1093/femsle/fnaa172 doi:  10.1093/femsle/fnaa172
[33] 杨清, 白丽萍. 产甲烷古菌甲基转移酶研究进展[J]. 中国沼气, 2024, 42(2): 3−12. https://doi.org/10.20022/j.cnki.1000-1166.20240325 doi:  10.20022/j.cnki.1000-1166.20240325
[34]

Vítězová M, Kohoutová A, Vítěz T, et al. Methanogenic microorganisms in industrial wastewater anaerobic treatment [J]. Processes, 2020, 8(12): 1546. https://doi.org/10.3390/pr8121546 doi:  10.3390/pr8121546
[35] 李旭, 冯磊, 甄箫斐, 等. 基于CSTR反应器鸡粪秸秆共消化产甲烷特性及菌群变化研究[J]. 环境科学学报, 2021, 41(8): 3312−3323. https://doi.org/10.13671/j.hjkxxb.2021.0036 doi:  10.13671/j.hjkxxb.2021.0036
[36]

Kotsyurbenko O R. Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems [J]. FEMS Microbiology Ecology, 2005, 53(1): 3−13. https://doi.org/10.1016/j.femsec.2004.12.009 doi:  10.1016/j.femsec.2004.12.009
[37] 孔德望, 张克强, 房芳, 等. 猪粪厌氧发酵消化液回流体系微生物群落结构特征与产气关系研究[J]. 农业环境科学学报, 2018, 37(3): 559−566. https://doi.org/10.11654/jaes.2017-1241 doi:  10.11654/jaes.2017-1241