[1] Cahill J F, Jr, Mcnickle G G. The behavioral ecology of nutrient foraging by plants [J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42: 289−311. https://doi.org/10.1146/annurev-ecolsys-102710-145006 doi:  10.1146/annurev-ecolsys-102710-145006
[2] 凌启鸿. 作物群体质量[D]. 扬州: 扬州大学, 2003. (查阅网上资料, 未找到本条文献信息, 请确认)
[3]

Zhu Y Y, Chen H R, Fan J H, et al. Genetic diversity and disease control in rice [J]. Nature, 2000, 406(6797): 718−722. https://doi.org/10.1038/35021046 doi:  10.1038/35021046
[4]

Altieri M A. The ecological role of biodiversity in agroecosystems [J]. Agriculture, Ecosystems & Environment, 1999, 74(1/3): 19−31. https://doi.org/10.1016/S0167-8809(99)00028-6 doi:  10.1016/S0167-8809(99)00028-6
[5]

Pretty J, Bharucha Z P. Sustainable intensification in agricultural systems [J]. Annals of Botany, 2014, 114(8): 1571−1596. https://doi.org/10.1093/aob/mcu205 doi:  10.1093/aob/mcu205
[6]

Tilman D, Downing J A. Biodiversity and stability in grasslands [J]. Nature, 1994, 367(6461): 363−365. https://doi.org/10.1038/367363a0 doi:  10.1038/367363a0
[7] 陈天祥, 杨顺瑛, 王书伟, 等. 水稻氮素利用效率的基因型差异与调控途径[J]. 土壤, 2022, 54(5): 873−881. https://doi.org/10.13758/j.cnki.tr.2022.05.001 doi:  10.13758/j.cnki.tr.2022.05.001
[8]

Li L, Sun J H, Zhang F S, et al. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients [J]. Field Crops Research, 2001, 71(2): 123−137. https://doi.org/10.1016/S0378-4290(01)00156-3 doi:  10.1016/S0378-4290(01)00156-3
[9]

Kong C H, Xuan T D, Khanh T D, et al. Allelochemicals and signaling chemicals in plants [J]. Molecules, 2019, 24(15): 2737. https://doi.org/10.3390/molecules24152737 doi:  10.3390/molecules24152737
[10]

Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology, 2006, 57: 233−266. https://doi.org/10.1146/annurev.arplant.57.032905.105159 doi:  10.1146/annurev.arplant.57.032905.105159
[11]

Semchenko M, Saar S, Lepik A. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes [J]. New Phytologist, 2014, 204(3): 631−637. https://doi.org/10.1111/nph.12930 doi:  10.1111/nph.12930
[12]

Kato-Noguchi H, Peters R J. The role of momilactones in rice allelopathy [J]. Journal of Chemical Ecology, 2013, 39(2): 175−185. https://doi.org/10.1007/s10886-013-0236-9 doi:  10.1007/s10886-013-0236-9
[13]

Macías F A, Molinillo J M G, Varela R M, et al. Allelopathy—a natural alternative for weed control [J]. Pest Management Science, 2007, 63(4): 327−348. https://doi.org/10.1002/ps.1342 doi:  10.1002/ps.1342
[14]

Willis R J. Juglans spp. , juglone and allelopathy [J]. Allelopathy Journal, 2000, 7(1): 1−55. https://doi.org/10.1111/j.1365-2745.2006.01124.x doi:  10.1111/j.1365-2745.2006.01124.x
[15]

Schenk H J. Root competition: beyond resource depletion [J]. Journal of Ecology, 2006, 94(4): 725−739. https://doi.org/10.1111/j.1365-2745.2006.01124.x doi:  10.1111/j.1365-2745.2006.01124.x
[16] 储薇, 郭信来, 张晨, 等. 丛枝菌根真菌-植物-根际微生物互作研究进展与展望[J]. 中国生态农业学报(中英文), 2022, 30(11): 1709−1721. https://doi.org/10.12357/cjea.20220093 doi:  10.12357/cjea.20220093
[17]

Seal A N, Haig T, Pratley J E. Evaluation of putative allelochemicals in rice root exudates for their role in the suppression of arrowhead root growth [J]. Journal of Chemical Ecology, 2004, 30(8): 1663−1678. https://doi.org/10.1023/B:JOEC.0000042075.96379.71 doi:  10.1023/B:JOEC.0000042075.96379.71
[18]

Lynch J P. Roots of the second green revolution [J]. Australian Journal of Botany, 2007, 55(5): 493−512. https://doi.org/10.1071/BT06118 doi:  10.1071/BT06118
[19]

Henry A, Gowda V R P, Torres R O, et al. Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields [J]. Field Crops Research, 2011, 120(2): 205−214. https://doi.org/10.1016/j.fcr.2010.10.003 doi:  10.1016/j.fcr.2010.10.003
[20]

Fang S Q, Clark R T, Zheng Y, et al. Genotypic recognition and spatial responses by rice roots [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(7): 2670−2675. https://doi.org/10.1073/pnas.1222821110 doi:  10.1073/pnas.1222821110
[21]

Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany [J]. Annals of Botany, 2013, 111(6): 1021−1058. https://doi.org/10.1093/aob/mct067 doi:  10.1093/aob/mct067
[22]

Nakamura Y. Phosphate starvation and membrane lipid remodeling in seed plants [J]. Progress in Lipid Research, 2013, 52(1): 43−50. https://doi.org/10.1016/j.plipres.2012.07.002 doi:  10.1016/j.plipres.2012.07.002
[23]

Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture [J]. Annals of Botany, 2010, 105(7): 1141−1157. https://doi.org/10.1093/aob/mcq028 doi:  10.1093/aob/mcq028
[24]

Hildebrandt T M, Nesi A N, Araújo W L, et al. Amino acid catabolism in plants [J]. Molecular Plant, 2015, 8(11): 1563−1579. https://doi.org/10.1016/j.molp.2015.09.005 doi:  10.1016/j.molp.2015.09.005
[25]

Gill S S, Tuteja N. Polyamines and abiotic stress tolerance in plants [J]. Plant Signaling & Behavior, 2010, 5(1): 26−33. https://doi.org/10.4161/psb.5.1.10291 doi:  10.4161/psb.5.1.10291
[26]

Hassan S, Mathesius U. The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions [J]. Journal of Experimental Botany, 2012, 63(9): 3429−3444. https://doi.org/10.1093/jxb/err430 doi:  10.1093/jxb/err430