[1] PEREZ-RUEDA E, COLLADO-VIDES J. Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria [J]. Journal of Molecular Evolution, 2001, 53(3): 172 − 179. doi:  10.1007/s002390010207
[2] ARAVIND L, ANANTHARAMAN V, BALAJI S, et al. The many faces of the helix-turn-helix domain: transcription regulation and beyond [J]. FEMS Microbiology Reviews, 2005, 29(2): 231 − 262. doi:  10.1016/j.fmrre.2004.12.008
[3] MADDOCKS S E, OYSTON P C. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins [J]. Microbiology, 2008, 154(Pt12): 3609 − 3623.
[4] DORMEYER M, LUBKE A L, MULLER P, et al. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant [J]. Environmental Microbiology Reports, 2017, 9(3): 279 − 289. doi:  10.1111/1758-2229.12531
[5] DORMEYER M, LENTES S, RICHTS B, et al. Variants of the Bacillus subtilis LysR-Type regulator GltC with altered activator and repressor function [J]. Frontiers in Microbiology, 2019, 10: 2321. doi:  10.3389/fmicb.2019.02321
[6] QIAN W, JIA Y, REN S X, et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv campestris [J]. Genome Research, 2005, 15(6): 757 − 767. doi:  10.1101/gr.3378705
[7] LIU G F, SU H Z, SUN H Y, et al. Competitive control of endoglucanase gene engXCA expression in the plant pathogen Xanthomonas campestris by the global transcriptional regulators HpaR1 and Clp [J]. Molecular Plant Pathology, 2019, 20(1): 51 − 68. doi:  10.1111/mpp.12739
[8] LU X H, AN S Q, TANG D J, et al. RsmA regulates biofilm formation in Xanthomonas campestris through a regulatory network involving cyclic di-GMP and the Clp transcription factor [J]. PloS One, 2012, 7(12): e52646. doi:  10.1371/journal.pone.0052646
[9] TAO F, HE Y W, WU D H, et al. The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors [J]. Journal of Bacteriology, 2010, 192(4): 1020 − 1029. doi:  10.1128/JB.01253-09
[10] LI R F, LU G T, LI L, et al. Identification of a putative cognate sensor kinase for the two-component response regulator HrpG, a key regulator controlling the expression of the hrp genes in Xanthomonas campestris pv. campestris [J]. Environmental Microbiology, 2014, 16(7): 2053 − 2071. doi:  10.1111/1462-2920.12207
[11] WEI K, TANG D J, HE Y Q, et al. hpaR, a putative marR family transcriptional regulator, is positively controlled by HrpG and HrpX and involved in the pathogenesis, hypersensitive response, and extracellular protease production of Xanthomonas campestris pathovar campestris [J]. Journal of Bacteriology, 2007, 189(5): 2055 − 2062. doi:  10.1128/JB.01331-06
[12] WENGELNIK K, VAN DEN ACKERVEKEN G, BONAS U. HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators [J]. Molecular Plant-microbe Interactions: MPMI, 1996, 9(8): 704 − 712. doi:  10.1094/MPMI-9-0704
[13] HU R M, YANG T C, YANG S H, et al. Deduction of upstream sequences of Xanthomonas campestris flagellar genes responding to transcription activation by FleQ [J]. Biochemical and Biophysical Research Communications, 2005, 335(4): 1035 − 1043. doi:  10.1016/j.bbrc.2005.07.171
[14] TAO J, HE C. Response regulator, VemR, positively regulates the virulence and adaptation of Xanthomonas campestris pv. campestris [J]. FEMS Microbiology Letters, 2010, 304(1): 20 − 28. doi:  10.1111/j.1574-6968.2009.01892.x
[15] TAO J, LI C, LUO C, et al. RavA/RavR two-component system regulates Xanthomonas campestris pathogenesis and c-di-GMP turnover [J]. FEMS Microbiology Letters, 2014, 358(1): 81 − 90. doi:  10.1111/1574-6968.12529