[1] 程远梅, 祝凌燕, 田胜艳, 等. 海河及渤海表层沉积物中多环芳烃的分布与来源[J]. 环境科学学报, 2009, 29(11): 2420 − 2426. doi:  10.13671/j.hjkxxb.2009.11.022
[2] 彭士涛, 胡焱弟, 白志鹏. 渤海湾底质重金属污染及其潜在生态风险评价[J]. 水道港口, 2009, 30(1): 57 − 60. doi:  10.3969/j.issn.1005-8443.2009.01.011
[3]

BENAVIDES M P, GALLEGO S M, TOMARO M L. Cadmium toxicity in plants[J]. Brazilian Journal of Plant Physiology, 2005, 17(1): 21 − 34. doi:  10.1590/S1677-04202005000100003
[4]

NORDBERG G F. Biomarkers of exposure, effects and susceptibility in humans and their application in studies of interactions among metals in China[J]. Toxicology Letters, 2010, 192(1): 45 − 49. doi:  10.1016/j.toxlet.2009.06.859
[5]

WAN L, WANG N B, LI Q B, et al. Distribution of dissolved metals in seawater of Jinzhou Bay, China[J]. Environmental Toxicology and Chemistry, 2008, 27(1): 43 − 48. doi:  10.1897/07-155.1
[6]

GAO X L, ZHOU F X, CHEN C T A. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals[J]. Environment International, 2014, 62: 12 − 30. doi:  10.1016/j.envint.2013.09.019
[7]

SUN M, LIU G B, LIN H, et al. Effect of salinity on the bioaccumulation and depuration of cadmium in the pacific cupped oyster, Crassostrea gigas[J]. Environmental Toxicology and Pharmacology, 2018, 62: 88 − 97. doi:  10.1016/j.etap.2018.05.018
[8]

XIE J, YANG D L, SUN X. Combined toxicity of cadmium and lead on early life stages of the Pacific oyster, Crassostrea gigas[J]. Invertebrate Survival Journal, 2017, 14(1): 210 − 220.
[9] 郑关超, 郭萌萌, 赵春霞, 等. 环渤海地区养殖水产品中多环芳烃(PAHs)污染残留及健康风险评估[J]. 中国渔业质量与标准, 2015, 5(6): 20 − 26.
[10] 吴玲玲, 明玺, 陈玲, 等. 长江口水域菲含量及对斑马鱼组织结构的影响[J]. 环境科学与技术, 2007, 30(7): 13 − 15. doi:  10.3969/j.issn.1003-6504.2007.07.005
[11] 刘宪斌, 陈楠, 田胜艳, 等. 天津高沙岭潮间带泥螺对多环芳烃菲的累积特征[J]. 生态环境学报, 2009, 18(4): 1241 − 1246. doi:  10.16258/j.cnki.1674-5906.2009.04.018
[12]

LIMA D, ZACCHI F L, MATTOS J J, et al. Molecular and cellular effects of temperature in oysters Crassostrea brasiliana exposed to phenanthrene[J]. Chemosphere, 2018, 209: 307 − 318. doi:  10.1016/j.chemosphere.2018.06.094
[13]

PIAZZA R S, TREVISAN R, FLORES-NUNES F, et al. Exposure to phenanthrene and depuration: changes on gene transcription, enzymatic activity and lipid peroxidation in gill of scallops Nodipecten nodosus[J]. Aquatic Toxicology, 2016, 177: 146 − 155. doi:  10.1016/j.aquatox.2016.05.025
[14] 曾梦妮, 李磊, 马丽艳, 等. 菲在厚壳贻贝体内的富集与释放及其对HSP70 mRNA表达的影响[J]. 渔业科学进展, 2021, 42(6): 93 − 101. doi:  10.19663/j.issn2095-9869.20200811002
[15]

SUI Y, HUANG X Z, KONG H, et al. Physiological responses to salinity increase in blood parrotfish (Cichlasoma synspilum♀×Cichlasoma citrinellum ♂)[J]. SpringerPlus, 2016, 5(1): 1246. doi:  10.1186/s40064-016-2930-x
[16]

KIRKMAN H N, GAETANI G F. Mammalian catalase: a venerable enzyme with new mysteries[J]. Trends in Biochemical Sciences, 2007, 32(1): 44 − 50. doi:  10.1016/j.tibs.2006.11.003
[17]

SRIKANTH K, PEREIRA E, DUARTE A C, et al. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish—a review[J]. Environmental Science and Pollution Research, 2013, 20(4): 2133 − 2149. doi:  10.1007/s11356-012-1459-y
[18]

FAROMBI E O, ADELOWO O A, AJIMOKO Y R. Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River[J]. International Journal of Environmental Research and Public Health, 2007, 4(2): 158 − 165. doi:  10.3390/ijerph2007040011
[19]

MACÍAS-MAYORGA D, LAIZ I, MORENO-GARRIDO I, et al. Is oxidative stress related to cadmium accumulation in the mollusc Crassostrea angulata?[J]. Aquatic Toxicology, 2015, 161: 231 − 241. doi:  10.1016/j.aquatox.2015.02.007
[20]

BENALI I, BOUTIBA Z, GRANDJEAN D, et al. Spatial distribution and biological effects of trace metals (Cu, Zn, Pb, Cd) and organic micropollutants (PCBs, PAHs) in mussels Mytilus galloprovincialis along the Algerian west coast[J]. Marine Pollution Bulletin, 2017, 115(1/2): 539 − 550. doi:  10.1016/j.marpolbul.2016.12.028
[21]

BHAGAT J, SARKAR A, INGOLE B S. DNA damage and oxidative stress in marine gastropod Morula granulata exposed to phenanthrene[J]. Water, Air, & Soil Pollution, 2016, 227(4): 114. doi: 10.1007/s11270-016-2815-1
[22]

BHUYAN K, PATAR A, SINGHA U, et al. Phenanthrene alters oxidative stress parameters in tadpoles of Euphlycits cyanophlyctis (Anura, Dicroglossidae) and induces genotoxicity assessed by micronucleus and comet assay[J]. Environmental Science and Pollution Research, 2020, 27(17): 20962 − 20971. doi:  10.1007/s11356-020-08609-3
[23] 张燕. 低剂量镉及其与菲复合污染Hormesis效应的氧化应激机制[D]. 上海: 上海交通大学, 2010.
[24] 杨惠珍. 镉对背角无齿蚌外套膜、鳃和肝脏的氧化损伤研究[D]. 太原: 山西大学, 2015.
[25]

MARGOSHES M, VALLEE B L. A cadmium protein from equine kidney cortex[J]. Journal of the American Chemical Society, 1957, 79(17): 4813 − 4814. doi:  10.1021/ja01574a064
[26]

MILES A T, HAWKSWORTH G M, BEATTIE J H, et al. Induction, regulation, degradation, and biological significance of mammalian metallothioneins[J]. Critical Reviews in Biochemistry and Molecular Biology, 2000, 35(1): 35 − 70. doi:  10.1080/10409230091169168
[27]

AMIARD J C, AMIARD-TRIQUET C, BARKA S, et al. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers[J]. Aquatic Toxicology, 2006, 76(2): 160 − 202. doi:  10.1016/j.aquatox.2005.08.015
[28]

MUKHOPADHYAY I, NAZIR A, SAXENA D K, et al. Heat shock response: hsp70 in environmental monitoring[J]. Journal of Biochemical and Molecular Toxicology, 2003, 17(5): 249 − 254. doi:  10.1002/jbt.10086
[29]

XU Y, LIAN G J, HE G X, et al. Responses of pearl oysters to marine heatwaves as indicated by HSP70[J]. Frontiers in Marine Science, 2022, 9: 847585. doi:  10.3389/FMARS.2022.847585
[30] 阎波, 谭送琴, 马晓芳, 等. 菲和镉单一及复合污染条件下在毛蚶体内的富集动力学研究[J]. 生态毒理学报, 2017, 12(3): 572 − 578. doi:  10.7524/AJE.1673-5897.20160927001
[31] 阎波, 李英, 高楠, 等. 菲-Cd单一与联合作用对毛蚶的氧化胁迫及损伤[J]. 海洋环境科学, 2015, 34(6): 858 − 864. doi:  10.13634/j.cnki.mes.2015.06.010
[32]

JO P G, CHOI Y K, CHOI C Y. Cloning and mRNA expression of antioxidant enzymes in the Pacific oyster, Crassostrea gigas in response to cadmium exposure[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2008, 147(4): 460-469. doi: 10.1016/j.cbpc.2008.02.001
[33]

GUEGUEN Y, DENIS S, ADRIEN S, et al. Response of the pearl oyster Pinctada margaritifera to cadmium and chromium: identification of molecular biomarkers[J]. Marine Pollution Bulletin, 2017, 118(1/2): 420 − 426. doi:  10.1016/j.marpolbul.2017.03.012
[34]

LÜCHMANN K H, MATTOS J J, SIEBERT M N, et al. Biochemical biomarkers and hydrocarbons concentrations in the mangrove oyster Crassostrea brasiliana following exposure to diesel fuel water-accommodated fraction[J]. Aquatic Toxicology, 2011, 105(3/4): 652 − 660. doi:  10.1016/j.aquatox.2011.09.003
[35]

LÜCHMANN K H, DAFRE A L, TREVISAN R, et al. A light in the darkness: new biotransformation genes, antioxidant parameters and tissue-specific responses in oysters exposed to phenanthrene[J]. Aquatic Toxicology, 2014, 152: 324 − 334. doi:  10.1016/j.aquatox.2014.04.021
[36] 孔志明. 环境毒理学[M]. 6版. 南京: 南京大学出版社, 2017: 339.
[37]

LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402 − 408. doi:  10.1006/meth.2001.1262
[38] 朱道玉, 张培玉. 蒽对太平洋牡蛎不同发育时期抗氧化酶活性差异性影响[J]. 动物学杂志, 2006, 41(4): 6 − 9. doi:  10.3969/j.issn.0250-3263.2006.04.002
[39] 张宜奎, 宋秀凯, 刘爱英, 等. Cd2+胁迫对文蛤鳃组织SOD、CAT活性及MDA含量的影响[J]. 安全与环境学报, 2011, 11(6): 19 − 23. doi:  10.3969/j.issn.1009-6094.2011.06.005
[40]

CHELIKANI P, FITA I, LOEWEN P C. Diversity of structures and properties among catalases[J]. Cellular and Molecular Life Sciences, 2004, 61(2): 192 − 208. doi:  10.1007/s00018-003-3206-5
[41]

MARKLUND S L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species[J]. Biochemical Journal, 1984, 222(3): 649 − 655. doi:  10.1042/bj2220649
[42] 赵作媛. 镉-菲复合污染对蚯蚓的急性毒性效应及抗氧化酶的影响[D]. 上海: 上海交通大学, 2007.
[43]

SRIKANTH K, PEREIRA E, DUARTE A C, et al. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish—a review[J]. Environmental Science and Pollution Research, 2013, 20(4): 2133-2149. doi: 10.1007/s11356-012-1459-y(查阅网上资料,本条文献与第17条文献重复,请确认)
[44]

CIACCI, C, BARMO C, GALLO G, et al. Effects of sublethal, environmentally relevant concentrations of hexavalent chromium in the gills of Mytilus galloprovincialis[J]. Aquatic Toxicology, 2012, 120-121: 109-118. doi: 10.1016/j.aquatox.2012.04.015
[45] 侯建军, 张清顺, 熊邦喜, 等. 二价镉对梨形环棱螺毒理效应的研究[J]. 中国农业大学学报, 2009, 14(3): 54 − 62. doi:  10.3321/j.issn:1007-4333.2009.03.011
[46] 任加云, 潘鲁青, 苗晶晶. 苯并(a)芘和苯并(k)荧蒽混合物对栉孔扇贝毒理学指标的影响[J]. 环境科学学报, 2006, 26(7): 1180 − 1186. doi:  10.3321/j.issn:0253-2468.2006.07.023
[47] 柏世军. 水环境镉对罗非鱼的毒性作用和机理探讨[D]. 杭州: 浙江大学, 2006.
[48]

FAROMBI E O, ADELOWO O A, AJIMOKO Y R. Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River[J]. International Journal of Environmental Research and Public Health, 2007, 4(2): 158-165. doi: 10.3390/ijerph2007040011(查阅网上资料,本条文献与第18条文献重复,请确认)
[49]

VLAHOGIANNI T H, VALAVANIDIS A. Heavy-metal effects on lipid peroxidation and antioxidant defence enzymes in mussels Mytilus galloprovincialis[J]. Chemistry and Ecology, 2007, 23(5): 361 − 371. doi:  10.1080/02757540701653285
[50] 董文强. 毛蚶三种抗氧化应急类蛋白基因的鉴定及其在苯并芘与镉单一及复合胁迫下的表达[D]. 舟山: 浙江海洋大学, 2019. doi: 10.27747/d.cnki.gzjhy.2019.000143
[51]

ZACCHI F L, DE LIMA D, FLORES-NUNES F, et al. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities[J]. Aquatic Toxicology, 2017, 183: 94 − 103. doi:  10.1016/j.aquatox.2016.12.016
[52]

YADETIE F, BUTCHER S, FØRDE H E, et al. Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics[J]. BMC Genomics, 2012, 13: 55. doi:  10.1186/1471-2164-13-55
[53]

RAINBOW P S. Trace metal bioaccumulation: models, metabolic availability and toxicity[J]. Environment International, 2007, 33(4): 576 − 582. doi:  10.1016/j.envint.2006.05.007