[1] |
HONE A J, MEYER E L, MCINTYRE M, et al. Nicotinic acetylcholine receptors in dorsal root ganglion neurons include the alpha6beta4* subtype [J]. FASEB Journal, 2012, 26(2): 917 − 926. doi: 10.1096/fj.11-195883 |
[2] |
MACKEY E D, ENGLE S E, KIM M R, et al. alpha6* nicotinic acetylcholine receptor expression and function in a visual salience circuit [J]. Journal of Neuroscience, 2012, 32(30): 10226 − 10237. doi: 10.1523/JNEUROSCI.0007-12.2012 |
[3] |
GIRIBALDI J, DUTERTRE S. alpha-Conotoxins to explore the molecular, physiological and pathophysiological functions of neuronal nicotinic acetylcholine receptors [J]. Neuroscience Letters, 2018, 679: 24 − 34. doi: 10.1016/j.neulet.2017.11.063 |
[4] |
KRASHIA P, MORONI M, BROADBENT S, et al. Human α3β4 neuronal nicotinic receptors show different stoichiometry if they are expressed in Xenopus oocytes or mammalian HEK293 cells [J]. PLoS One, 2010, 5(10): e13611. doi: 10.1371/journal.pone.0013611 |
[5] |
CECCHINI M, CHANGEUX J P. The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation [J]. Neuropharmacology, 2015, 96(Pt B): 137 − 149. |
[6] |
EGLETON R D, BROWN K C, DASGUPTA P. Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis [J]. Trends in Pharmacological Sciences, 2008, 29(3): 151 − 158. doi: 10.1016/j.tips.2007.12.006 |
[7] |
GAO F, CHEN D, MA X, et al. Alpha6-containing nicotinic acetylcholine receptor is a highly sensitive target of alcohol [J]. Neuropharmacology, 2019, 149: 45 − 54. doi: 10.1016/j.neuropharm.2019.01.021 |
[8] |
LUO S, ZHANGSUN D, WU Y, et al. Characterization of a novel alpha-conotoxin from conus textile that selectively targets alpha6/alpha3beta2beta3 nicotinic acetylcholine receptors [J]. The Journal of Biological Chemistry, 2013, 288(2): 894 − 902. doi: 10.1074/jbc.M112.427898 |
[9] |
LEINO S, KOSKI S K, RANNANPAA S, et al. Effects of antidyskinetic nicotine treatment on dopamine release in dorsal and ventral striatum [J]. Neuroscience Letters, 2018, 672: 40 − 45. doi: 10.1016/j.neulet.2018.02.042 |
[10] |
EIDEN L E. Commentary on chapters 'clinical and developmental aspects' and 'stress responses of the adrenal medulla' [J]. Cellular and Molecular Neurobiology, 2010, 30(8): 1371 − 1375. doi: 10.1007/s10571-010-9607-8 |
[11] |
PEREZ-ALVAREZ A, HERNANDEZ-VIVANCO A, MCINTOSH J M, et al. Native alpha6beta4* nicotinic receptors control exocytosis in human chromaffin cells of the adrenal gland [J]. FASEB Journal, 2012, 26(1): 346 − 354. doi: 10.1096/fj.11-190223 |
[12] |
LIMAPICHAT W, DOUGHERTY D A, LESTER H A. Subtype-specific mechanisms for functional interaction between α6β4* nicotinic acetylcholine receptors and P2X receptors [J]. Molecular Pharmacology, 2014, 86(3): 263 − 274. doi: 10.1124/mol.114.093179 |
[13] |
HONE A J, MCINTOSH J M. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain [J]. FEBS Letters, 2018, 592(7): 1045 − 1062. doi: 10.1002/1873-3468.12884 |
[14] |
JENSEN A B, HOESTGAARD-JENSEN K, JENSEN A A. Pharmacological characterisation of α6β4* nicotinic acetylcholine receptors assembled from three chimeric α6/α3 subunits in tsA201 cells [J]. European Journal of Pharmacology, 2014, 740: 703 − 713. doi: 10.1016/j.ejphar.2014.06.005 |
[15] |
NAKAGAWA T, TOUHARA K. Functional assays for insect olfactory receptors in Xenopus oocytes [J]. Methods in Molecular Biology, 2013, 1068: 107 − 119. |
[16] |
LUO S, ZHANGSUN D, ZHU X, et al. Characterization of a novel alpha-conotoxin TxID from Conus textile that potently blocks rat alpha3beta4 nicotinic acetylcholine receptors [J]. Journal of Medicinal Chemistry, 2013, 56(23): 9655 − 9663. doi: 10.1021/jm401254c |
[17] |
LUO S, AKONDI K B, ZHANGSUN D, et al. Atypical alpha-conotoxin LtIA from Conus litteratus targets a novel microsite of the alpha3beta2 nicotinic receptor [J]. Journal of Biological Chemistry, 2010, 285(16): 12355 − 12366. doi: 10.1074/jbc.M109.079012 |
[18] |
MILLARD E L, NEVIN S T, LOUGHNAN M L, et al. Inhibition of neuronal nicotinic acetylcholine receptor subtypes by alpha-Conotoxin GID and analogues [J]. Journal of Biological Chemistry, 2009, 284(8): 4944 − 4951. doi: 10.1074/jbc.M804950200 |
[19] |
YU J, ZHU X, HARVEY P J, et al. Single amino acid substitution in alpha-conotoxin TxID reveals a specific alpha3beta4 nicotinic acetylcholine receptor antagonist [J]. Journal of Medicinal Chemistry, 2018, 61(20): 9256 − 9265. doi: 10.1021/acs.jmedchem.8b00967 |
[20] |
PONS S, FATTORE L, COSSU G, et al. Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration [J]. Journal of Neuroscience, 2008, 28(47): 12318 − 12327. doi: 10.1523/JNEUROSCI.3918-08.2008 |
[21] |
GRISHIN A A, WANG C I, MUTTENTHALER M, et al. Alpha-conotoxin AuIB isomers exhibit distinct inhibitory mechanisms and differential sensitivity to stoichiometry of alpha3beta4 nicotinic acetylcholine receptors [J]. Journal of Biological Chemistry, 2010, 285(29): 22254 − 22263. doi: 10.1074/jbc.M110.111880 |
[22] |
WU X, TAE H S, HUANG Y H, et al. Stoichiometry dependent inhibition of rat alpha3beta4 nicotinic acetylcholine receptor by the ribbon isomer of alpha-conotoxin AuIB [J]. Biochemical Pharmacology, 2018, 155: 288 − 297. |