[1] LIU Y, LI L, AN J, et al. Estimation of biogenic VOC emissions and its impact on ozone formation over the Yangtze River Delta region, China [J]. Atmospheric Environment, 2018, 186: 113 − 128. doi:  10.1016/j.atmosenv.2018.05.027
[2] BAI J, DE LEEUW G, VAN DER A R, et al. Variations and photochemical transformations of atmospheric constituents in North China [J]. Atmospheric Environment, 2018, 189: 213 − 226. doi:  10.1016/j.atmosenv.2018.07.004
[3] ZHANG X, DU J, ZHANG L, et al. Impact of afforestation on surface ozone in the North China Plain during the three-decade period [J]. Agricultural and Forest Meteorology, 2020, 287: 107979.
[4] 张甜甜, 郑炳松, 袁虎威, 等. 植物挥发性有机物合成与代谢途径及其释放与感知调控机制的研究进展[J]. 天然产物研究与开发, 2023, 35(6): 1068 − 1080. doi:  10.16333/j.1001-6880.2023.6.016
[5]

DUAN C, ZUO S, WU Z, et al. A review of research hotspots and trends in biogenic volatile organic compounds (BVOCs) emissions combining bibliometrics with evolution tree methods [J]. Environmental Research Letters, 2021, 16(1): 013003.
[6]

YANG W, CAO J, WU Y, et al. Review on plant terpenoid emissions worldwide and in China [J]. Science of the Total Environment, 2021, 787: 147454.
[7]

KARLSSON P E, KLINGBERG J, ENGARDT M, et al. Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe [J]. Science of the Total Environment, 2017, 576: 22 − 35. doi:  10.1016/j.scitotenv.2016.10.061
[8]

VAN MEENINGEN Y, SCHURGERS G, RINNAN R, et al. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce [J]. Biogeosciences, 2017, 14(18): 4045 − 4060. doi:  10.5194/bg-14-4045-2017
[9]

XU S, HE X, CHEN W, et al. Differential sensitivity of four urban tree species to elevated O3 [J]. Urban Forestry & Urban Greening, 2015, 14(4): 1166 − 1173.
[10]

CARRIERO G, BRUNETTI C, FARES S, et al. BVOC responses to realistic nitrogen fertilization and ozone exposure in silver birch [J]. Environmental Pollution, 2016, 213: 988 − 995. doi:  10.1016/j.envpol.2015.12.047
[11]

YUAN X, CALATAYUD V, GAO F, et al. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar [J]. Plant, Cell & Environment, 2016, 39(10): 2276 − 2287.
[12]

GHIMIRE R P, KIVIMäENPää M, KASURINEN A, et al. Herbivore-induced BVOC emissions of Scots pine under warming, elevated ozone and increased nitrogen availability in an open-field exposure [J]. Agricultural and Forest Meteorology, 2017, 242: 21 − 32. doi:  10.1016/j.agrformet.2017.04.008
[13]

MOCHIZUKI T, WATANABE M, KOIKE T, et al. Monoterpene emissions from needles of hybrid larch F1 (Larix gmelinii var. japonica × Larix kaempferi) grown under elevated carbon dioxide and ozone [J]. Atmospheric Environment, 2017, 148: 197 − 202. doi:  10.1016/j.atmosenv.2016.10.041
[14]

ASENSIO D, PEñUELAS J, OGAYA R, et al. Seasonal soil VOC exchange rates in a Mediterranean holm oak forest and their responses to drought conditions [J]. Atmospheric Environment, 2007, 41(11): 2456 − 2466. doi:  10.1016/j.atmosenv.2006.05.007
[15]

PEñUELAS J, ASENSIO D, THOLL D, et al. Biogenic volatile emissions from the soil [J]. Plant, Cell & Environment, 2014, 37(8): 1866 − 1891.
[16]

RASHEED M U, KASURINEN A, KIVIMäENPää M, et al. The responses of shoot-root-rhizosphere continuum to simultaneous fertilizer addition, warming, ozone and herbivory in young Scots pine seedlings in a high latitude field experiment [J]. Soil Biology and Biochemistry, 2017, 114: 279 − 294. doi:  10.1016/j.soilbio.2017.07.024
[17]

KIVIMäENPää M, RIIKONEN J, AHONEN V, et al. Sensitivity of Norway spruce physiology and terpenoid emission dynamics to elevated ozone and elevated temperature under open-field exposure [J]. Environmental and Experimental Botany, 2013, 90: 32 − 42. doi:  10.1016/j.envexpbot.2012.11.004
[18]

PEñUELAS J, STAUDT M. BVOCs and global change [J]. Trends in Plant Science, 2010, 15(3): 133 − 144. doi:  10.1016/j.tplants.2009.12.005
[19]

LIU L, SEYLER B C, LIU H, et al. Biogenic volatile organic compound emission patterns and secondary pollutant formation potentials of dominant greening trees in Chengdu, southwest China [J]. Journal of Environmental Sciences, 2022, 114: 179 − 193. doi:  10.1016/j.jes.2021.08.033
[20] 海口市生态环境局. 2021年海口市生态环境状况公报[R]. 海口市生态环境局, 2022
[21]

FUHRER J, SKäRBY L, ASHMORE M R. Critical levels for ozone effects on vegetation in Europe [J]. Environmental Pollution, 1997, 97(1/2): 91 − 106.
[22]

SOFIEV M, TUOVINEN J P. Factors determining the robustness of AOT40 and other ozone exposure indices [J]. Atmospheric Environment, 2001, 35(20): 3521 − 3528. doi:  10.1016/S1352-2310(01)00086-3
[23]

MA H, CHEN Y, CHEN J, et al. Comparison of allelopathic effects of two typical invasive plants: Mikania micrantha and Ipomoea cairica in Hainan Island [J]. Scientific Reports, 2020, 10: 11332
[24] 马慧燕, 伍乾辉, 付彦, 等. 几种海南岛热带雨林优势种植物挥发性有机物排放对模拟氮沉降的短期响应[J]. 生态学报, 2023, 43(3): 1073 − 1089.
[25] 郭璐瑶, 苗灵凤, 李大东, 等. 施氮和增温对降香黄檀幼苗生长发育和生理特征的影响[J]. 植物科学学报, 2022, 40(2): 259 − 268.
[26]

YU H, BLANDE J D. Diurnal variation in BVOC emission and CO2 gas exchange from above- and belowground parts of two coniferous species and their responses to elevated O3 [J]. Environmental Pollution, 2021, 278: 116830
[27]

SINGH A P, VARSHNEY C K, SINGH U K. Seasonal variations in isoprene emission from tropical deciduous tree species [J]. Environmental Monitoring and Assessment, 2007, 131(1): 231 − 235.
[28]

WANG Y, ZHAO Y, ZHANG L, et al. Modified regional biogenic VOC emissions with actual ozone stress and integrated land cover information: a case study in Yangtze River Delta, China [J]. Science of the Total Environment, 2020, 727: 138703
[29]

CHEN F, RO D K, PETRI J, et al. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1, 8-cineole [J]. Plant Physiology, 2004, 135(4): 1956 − 1966. doi:  10.1104/pp.104.044388
[30]

ACTON W J F, JUD W, GHIRARDO A, et al. The effect of ozone fumigation on the biogenic volatile organic compounds (BVOCs) emitted from Brassica napus above- and below-ground [J]. PLoS One, 2018, 13(12): e0208825
[31]

ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds [J]. Chemical Reviews, 2003, 103(12): 4605 − 4638. doi:  10.1021/cr0206420
[32]

MATYSSEK R, WIESER G, CALFAPIETRA C, et al. Forests under climate change and air pollution: gaps in understanding and future directions for research [J]. Environmental Pollution, 2012, 160: 57 − 65. doi:  10.1016/j.envpol.2011.07.007
[33]

SUGAI T, OKAMOTO S, AGATHOKLEOUS E, et al. Leaf defense capacity of Japanese elm (Ulmus davidiana var. japonica) seedlings subjected to a nitrogen loading and insect herbivore dynamics in a free air ozone-enriched environment [J]. Environmental Science and Pollution Research, 2020, 27(3): 3350 − 3360. doi:  10.1007/s11356-019-06918-w
[34]

SCHOONHOVEN L M, VAN LOON J A, DICKE M, et al. Insect-plant biology [J]. Oxford University Press, New York, 2005, 448
[35] 鲍歆歆, 周伟奇, 郑重, 等. 城市植物挥发性有机化合物排放与臭氧相互作用及其机制[J]. 生态学报, 2023, 43(5): 1749 − 1762.
[36]

AGATHOKLEOUS E, KITAO M, KINOSE Y. A review study on ozone phytotoxicity metrics for setting critical levels in Asia [J]. Asian Journal of Atmospheric Environment, 2018, 12(1): 1 − 16. doi:  10.5572/ajae.2018.12.1.001
[37]

AGATHOKLEOUS E, BELZ R G, CALATAYUD V, et al. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models [J]. Science of the Total Environment, 2019, 649: 61 − 74. doi:  10.1016/j.scitotenv.2018.08.264
[38] 高峰, 李品, 冯兆忠. 臭氧与干旱对植物复合影响的研究进展[J]. 植物生态学报, 2017, 41(2): 252 − 268. doi:  10.17521/cjpe.2016.0195
[39]

YáñEZ-SERRANO A M, BOURTSOUKIDIS E, ALVES E G, et al. Amazonian biogenic volatile organic compounds under global change [J]. Global Change Biology, 2020, 26(9): 4722 − 4751. doi:  10.1111/gcb.15185
[40]

INCLáN R, GIMENO B S, PEñUELAS J, et al. Carbon isotope composition, macronutrient concentrations, and carboxylating enzymes in relation to the growth of Pinus halepensis mill. when subject to ozone stress [J]. Water, Air, & Soil Pollution, 2011, 214(1): 587 − 598.
[41] 列淦文, 郭淑红, 薛立. 臭氧胁迫对植物生长影响的综述[J]. 生态科学, 2014, 33(3): 607 − 612.
[42]

BLANDE J D, HOLOPAINEN J K, NIINEMETS U. Plant volatiles in polluted atmospheres: stress responses and signal degradation [J]. Plant, Cell & Environment, 2014, 37(8): 1892 − 1904.
[43] 王新源, 李玉霖, 赵学勇, 等. 干旱半干旱区不同环境因素对土壤呼吸影响研究进展[J]. 生态学报, 2012, 32(15): 4890 − 4901.
[44]

KUZYAKOV Y. Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods [J]. Soil Biology and Biochemistry, 2002, 34(11): 1621 − 1631. doi:  10.1016/S0038-0717(02)00146-3
[45]

YANG D, DU X, LIANG X, et al. Different roles of the mevalonate and methylerythritol phosphate pathways in cell growth and tanshinone production of Salvia miltiorrhiza hairy roots [J]. PLoS One, 2012, 7(11): e46797
[46]

KESSELMEIER J, STAUDT M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology [J]. Journal of Atmospheric Chemistry, 1999, 33(1): 23 − 88. doi:  10.1023/A:1006127516791
[47]

KESSELMEIER J, CICCIOLI P, KUHN U, et al. Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget [J]. Global Biogeochemical Cycles, 2002, 16(4): 73 − 1.