[1] |
VICENTE J G, CONWAY J, ROBERTS S J, et al. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars[J]. Phytopathology, 2001, 91(5): 492 − 499. doi: 10.1094/PHYTO.2001.91.5.492 |
[2] |
朱镜璇. 分子动力学模拟结合深度学习探究氨基酸突变或配体结合对酶活性的影响[D]. 长春: 吉林大学, 2021. |
[3] |
KAMARUDDIN S, AHMAD REDZUAN R, MINOR N, et al. Biochemical characterisation and structure determination of a novel cold-active proline iminopeptidase from the psychrophilic yeast, Glaciozyma antarctica PI12[J]. Catalysts, 2022, 12(7): 722. doi: 10.3390/catal12070722 |
[4] |
KUERMAN M, WANG R, ZHOU Y, et al. Metagenomic insights into bacterial communities and functional genes associated with texture characteristics of Kazakh artisanal fermented milk Ayran in Xinjiang, China[J]. Food Research International, 2023, 164: 112414. doi: 10.1016/j.foodres.2022.112414 |
[5] |
INTAD S. Biochemical activities of actinopain peptidases from actinomyces bacteria[D]. Hong Kong, China: The University of Hong Kong, 2023. |
[6] |
KAMARINOU C S, KIOUSI D E, REPANAS P, et al. Dissecting the genetic basis of the technological, functional, and safety characteristics of Lacticaseibacillus paracasei SRX10[J]. Microorganisms, 2024, 12(1): 93. doi: 10.3390/microorganisms12010093 |
[7] |
YAMAMOTO Y, USUKI H, IWABUCHI M, et al. Prolyl aminopeptidase from Streptomyces thermoluteus subsp. fuscus strain NBRC14270 and synthesis of proline-containing peptides by its S144C variant[J]. Applied and Environmental Microbiology, 2010, 76(18): 6180 − 6185. doi: 10.1128/AEM.01242-10 |
[8] |
YAMAMOTO Y, USUKI H, KUMAGAI Y, et al. Synthesis of prolyl-hydroxyproline using prolyl aminopeptidase from Streptomyces aureofaciens TH-3[J]. Process Biochemistry, 2011, 46(8): 1560 − 1564. doi: 10.1016/j.procbio.2011.04.009 |
[9] |
ZHANG L L, JIA Y T, WANG L, et al. A proline iminopeptidase gene upregulated in planta by a LuxR homologue is essential for pathogenicity of Xanthomonas campestris pv. campestris[J]. Molecular Microbiology, 2007, 65(1): 121 − 136. doi: 10.1111/j.1365-2958.2007.05775.x |
[10] |
SCHÄFER A, TAUCH A, JÄGER W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum[J]. Gene, 1994, 145(1): 69 − 73. doi: 10.1016/0378-1119(94)90324-7 |
[11] |
HUYNH T V, DAHLBECK D, STASKAWICZ B J. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity[J]. Science, 1989, 245(4924): 1374 − 1377. doi: 10.1126/science.2781284 |
[12] |
SUDO T, SHINOHARA K, DOHMAE N, et al. Isolation and characterization of the gene encoding an aminopeptidase involved in the selective toxicity of ascamycin toward Xanthomonas campestris pv. citri[J]. Biochemical Journal, 1996, 319(1): 99 − 102. doi: 10.1042/bj3190099 |
[13] |
BORN A, SOETBEER J, HENEN M A, et al. Ligand-specific conformational change drives interdomain allostery in Pin1[J]. Nature Communications, 2022, 13(1): 4546. doi: 10.1038/s41467-022-32340-x |
[14] |
郭艺. Xcc suxB应答蔗糖信号调控机制的初步研究[D]. 海口: 海南大学, 2020. doi: 10.27073/d.cnki.ghadu.2020.001152 |
[15] |
于燕燕, 夏影影, 吴可建, 等. XppI调控水稻白叶枯病菌致病力的潜在机制[J]. 热带生物学报, 2023, 14(6): 642 − 650. doi: 10.15886/j.cnki.rdswxb.20230024 |
[16] |
KOYANAGI T, HARA A, KOBAYASHI K, et al. Thermococcus sp. KS-1 PPIase as a fusion partner improving soluble production of aromatic amino acid decarboxylase[J]. AMB Express, 2021, 11(1): 178. doi: 10.1186/s13568-021-01340-3 |
[17] |
KAN J H, AN L, WU Y, et al. A dual role for proline iminopeptidase in the regulation of bacterial motility and host immunity[J]. Molecular Plant Pathology, 2018, 19(8): 2011 − 2024. doi: 10.1111/mpp.12677 |
[18] |
WADHWA N, BERG H C. Bacterial motility: machinery and mechanisms[J]. Nature Reviews Microbiology, 2022, 20(3): 161 − 173. doi: 10.1038/s41579-021-00626-4 |
[19] |
MOREIRA C G, WEINSHENKER D, SPERANDIO V. QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo[J]. Infection and Immunity, 2010, 78(3): 914 − 926. doi: 10.1128/IAI.01038-09 |
[20] |
陈小云. 柑橘溃疡病菌致病相关基因生物学功能分析及XAC1992互作蛋白的初步筛选[D]. 广州: 华南农业大学, 2019. doi: 10.27152/d.cnki.ghanu.2019.001210 |
[21] |
YUN M H, TORRES P S, EL OIRDI M, et al. Xanthan induces plant susceptibility by suppressing callose deposition[J]. Plant Physiology, 2006, 141(1): 178 − 187. doi: 10.1104/pp.105.074542 |
[22] |
ALVAREZ A M. Black rot of crucifers[M]//SLUSARENKO A J, FRASER R S S, LOON L C. Mechanisms of resistance to plant diseases. Dordrecht: Springer, 2000: 21−52. |
[23] |
GHIFARI A S, TEIXEIRA P F, KMIEC B, et al. A mitochondrial prolyl aminopeptidase PAP2 releases N-terminal proline and regulates proline homeostasis during stress response[J]. The Plant Journal, 2020, 104(5): 1182 − 1194. doi: 10.1111/tpj.14987 |