[1] |
CHENG Y L, ZHANG J G, HUANG Q, et al. Genome-based analysis of genetic diversity, antimicrobial susceptibility, and virulence gene distribution in Salmonella Pullorum isolates from poultry in China[J]. Animals, 2024, 14(18): 2675. doi: 10.3390/ani14182675 |
[2] |
LV Q B, RAN X H, QIU H Y, et al. Seroprevalence of pullorum disease in chicken across mainland China from 1982 to 2020: a systematic review and meta-analysis[J]. Research in Veterinary Science, 2022, 152: 156 − 166. doi: 10.1016/j.rvsc.2022.08.003 |
[3] |
韦安达, 朱华, 谢凤凤, 等. 火炭母的本草考证[J]. 湖北农业科学, 2022, 61(11): 101 − 106. doi: 10.14088/j.cnki.issn0439-8114.2022.11.020 |
[4] |
韦安达, 朱华, 谢凤凤, 等. 民族药材火炭母的研究进展[J]. 中国现代中药, 2020, 22(9): 1580 − 1586. doi: 10.13313/j.issn.1673-4890.20190821008 |
[5] |
刘富来, 冯翠兰, 王林川. 中草药对肠炎沙门氏菌的体外抑菌试验[J]. 中国兽药杂志, 2004, 38(11): 28 − 30. doi: 10.3969/j.issn.1002-1280.2004.11.011 |
[6] |
张易安, 郭琰娜, 刘妍, 等. 火炭母通过调控TLR4-TBK1信号通路改善鼠伤寒沙门菌感染小鼠空肠的炎症反应[J]. 中国兽医杂志, 2023, 59(11): 132 − 139. |
[7] |
罗静, 韦安达, 朱华, 等. 广西产火炭母总黄酮提取工艺优化及含量测定[J]. 湖北农业科学, 2024, 63(1): 164 − 168. doi: 10.14088/j.cnki.issn0439-8114.2024.01.030 |
[8] |
倪晓彤. 槲皮素对脂多糖诱导鸡肺损伤的保护作用[D]. 阿拉尔: 塔里木大学, 2024. doi: 10.27708/d.cnki.gtlmd.2024.000264 |
[9] |
于晋海. 槲皮素对鼠伤寒沙门氏菌脂多糖诱导鸡胚十二指肠和心脏损伤的保护效应[D]. 南昌: 江西农业大学, 2023. doi: 10.27177/d.cnki.gjxnu.2023.000004 |
[10] |
李连涛, 马畅, 赵茜, 等. 亚抑菌浓度山奈酚对鼠伤寒沙门氏菌侵袭鸡肠道上皮细胞的抑制作用研究[J]. 中国预防兽医学报, 2017, 39(7): 534 − 539. doi: 10.3969/j.issn.1008-0425.2017.07.05 |
[11] |
REHMAN T. 山奈酚抗鸡肠炎沙门菌感染的作用及机制研究[D]. 雅安: 四川农业大学, 2023. doi: 10.27345/d.cnki.gsnyu.2023.001136 |
[12] |
姜博达, 张文婷, 张腾飞, 等. 杨梅素和二氢杨梅素抑菌效果评估及其在杨树花中含量的测定[J]. 黑龙江畜牧兽医, 2023(19): 107 − 111. doi: 10.13881/j.cnki.hljxmsy.2022.09.0163 |
[13] |
姜博达. 杨梅素及二氢杨梅素对鸡白痢沙门菌的抑菌效果评估及初步机制研究[D]. 荆州: 长江大学, 2023. doi: 10.26981/d.cnki.gjhsc.2023.001051 |
[14] |
许孟霞, 黄忠明, 唐洪英, 等. 香叶木素缓解MRL/lpr狼疮性肾炎小鼠肾炎症反应的作用及可能机制[J]. 陆军军医大学学报, 2022, 44(12): 1237 − 1242. doi: 10.16016/j.2097-0927.202112027 |
[15] |
杨子, 赵天豪, 程阳, 等. 香叶木素通过调节小鼠的肠道免疫平衡减轻克罗恩病样结肠炎: 基于抑制PI3K/AKT通路[J]. 南方医科大学学报, 2023, 43(3): 474 − 482. doi: 10.12122/j.issn.1673-4254.2023.03.19 |
[16] |
余伟, 黄长山, 丁月超, 等. 香叶木素预处理通过抗炎和抗氧化发挥对小鼠肝缺血/再灌注的保护作用[J]. 中国药理学通报, 2022, 38(7): 1017 − 1022. doi: 10.12360/CPB202109067 |
[17] |
李俊宏. 香叶木素促进LPS诱导的肺上皮细胞修复的分子机制研究[D]. 重庆: 重庆理工大学, 2023. doi: 10.27753/d.cnki.gcqgx.2023.000083 |
[18] |
廖思捷. 香叶木素的类酶活性及其用于感染伤口愈合的研究[D]. 长沙: 湖南农业大学, 2023. doi: 10.27136/d.cnki.ghunu.2023.000427 |
[19] |
肖聚慧, 刘小军. 香叶木素对大鼠脑缺血再灌注损伤的保护作用研究[J]. 中医药信息, 2021, 38(5): 22 − 27. doi: 10.19656/j.cnki.1002-2406.210505 |
[20] |
HUANG H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances[J]. Sensors, 2018, 18(10): 3249. doi: 10.3390/s18103249 |
[21] |
NUDELMAN A, SHENOY A, ALLOUCHE-ARNON H, et al. Proteolytic vesicles derived from Salmonella enterica serovar typhimurium-infected macrophages: enhancing MMP-9-mediated invasion and EV accumulation[J]. Biomedicines, 2024, 12(2): 434. doi: 10.3390/biomedicines12020434 |
[22] |
涂永梅, 彭洁, 龙子, 等. PPAR-γ在巨噬细胞炎症调控中的作用及机制的研究进展[J]. 癌变·畸变·突变, 2022, 34(2): 158 − 161. doi: 10.3969/j.issn.1004-616x.2022.02.016 |
[23] |
BYNDLOSS M X, OLSAN E E, RIVERA-CHÁVEZ F, et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion[J]. Science, 2017, 357(6351): 570 − 575. doi: 10.1126/science.aam9949 |
[24] |
嵇莹莹, 龚国清. PI3K/Akt/mTOR通路在炎症相关疾病中分子机制研究进展[J]. 药学研究, 2018, 37(4): 226 − 229. doi: 10.13506/j.cnki.jpr.2018.04.011 |
[25] |
YOU X L, ZHAO M L, LIU Y R, et al. Hypericum perforatum L. protects against renal function decline in ovariectomy rat model by regulating expressions of NOS3 and AKT1 in AGE-RAGE pathway[J]. Phytomedicine, 2024, 123: 155160. doi: 10.1016/j.phymed.2023.155160 |
[26] |
张进, 武慧宁, 赵林露, 等. 基于网络药理学和分子对接探究罗汉果提取物抗炎作用机制[J]. 动物营养学报, 2025, 37(2): 1325 − 1339. doi: 10.12418/CJAN2025.114 |
[27] |
熊彦. VEGFR2调节血管炎症和血管新生的机制[D]. 北京: 北京大学, 2012. |
[28] |
VOTH S B, CHOI C S, MORROW K A, et al. Amyloid-beta precursor protein: essential to lung capillary barrier defense during acute infection[J]. The FASEB Journal, 2022, 36(S1). doi:10.1096/FASEBJ.2022.36.S1.R5635 (查阅网上资料,未找到本条文献页码,请确认) |
[29] |
BERMEJO-JAMBRINA M, EDER J, HELGERS L C, et al. C-type lectin receptors in antiviral immunity and viral escape[J]. Frontiers in Immunology, 2018, 9: 590. doi: 10.3389/fimmu.2018.00590 |
[30] |
LI M H, ZHANG R F, LI J, et al. The role of C-type lectin receptor signaling in the intestinal microbiota-inflammation-cancer axis[J]. Frontiers in Immunology, 2022, 13: 894445. doi: 10.3389/fimmu.2022.894445 |
[31] |
PENG W, XIA Q X, ZHANG Y, et al. VEGF and EGFR signaling pathways are involved in the baicalein attenuation of OVA-induced airway inflammation and airway remodeling in mice[J]. Respiratory Research, 2024, 25(1): 10. doi: 10.1186/s12931-023-02637-6 |
[32] |
LI X Q, SHAN C, WU Z H, et al. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway[J]. Inflammation Research, 2020, 69(4): 365 − 373. doi: 10.1007/s00011-020-01331-3 |
[33] |
KO H, KIM B S, LEE Y E, et al. Anti-inflammatory effects of Gingerenone A through modulation of toll-like receptor signaling pathways[J]. European Journal of Pharmacology, 2024, 983: 176997. doi: 10.1016/j.ejphar.2024.176997 |
[34] |
刘爱军, 黄晓兵, 张传亮, 等. 布鲁氏菌与宿主天然免疫信号通路相互作用的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1561 − 1574. doi: 10.11843/j.issn.0366-6964.2025.04.009 |
[35] |
CUI L, LI X F, LIU Z Y, et al. MAPK pathway orchestrates gallid alphaherpesvirus 1 infection through the biphasic activation of MEK/ERK and p38 MAPK signaling[J]. Virology, 2024, 597: 110159. doi: 10.1016/j.virol.2024.110159 |
[36] |
ZHANG L, SUN Y, XU W, et al. Baicalin inhibits Salmonella typhimurium-induced inflammation and mediates autophagy through TLR4/MAPK/NF-κB signalling pathway[J]. Basic & Clinical Pharmacology & Toxicology, 2021, 128(2): 241 − 255. doi: 10.1111/bcpt.13497 |
[37] |
CAI L L, XIE Y T, SHAO L T, et al. SaaS sRNA promotes Salmonella intestinal invasion via modulating MAPK inflammatory pathway[J]. Gut Microbes, 2023, 15(1): 2211184. doi: 10.1080/19490976.2023.2211184 |