[1] |
RAZA A, CHARAGH S, ZAHID Z, et al. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants[J]. Plant Cell Reports, 2021, 40(8): 1513 − 1541. doi: 10.1007/s00299-020-02614-z |
[2] |
WANG Y, MOSTAFA S, ZENG W, et al. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses[J]. International Journal of Molecular Sciences, 2021, 22(16): 8568. doi: 10.3390/ijms22168568 |
[3] |
CAARLS L, ELBERSE J, AWWANAH M, et al. Arabidopsis jasmonate-induced oxygenases down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6388 − 6393. |
[4] |
YAN J, YAO R, CHEN L, et al. Dynamic perception of jasmonates by the F-box protein COI1[J]. Molecular Plant, 2018, 11(10): 1237 − 1247. doi: 10.1016/j.molp.2018.07.007 |
[5] |
KOO A J, THIREAULT C, ZEMELIS S, et al. Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-l-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis[J]. The Journal of Biological Chemistry, 2014, 289(43): 29728 − 29738. doi: 10.1074/jbc.M114.603084 |
[6] |
KOO A J K, COOKE T F, HOWE G A. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): 9298 − 9303. |
[7] |
WIDEMANN E, MIESCH L, LUGAN R, et al. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves[J]. The Journal of Biological Chemistry, 2013, 288(44): 31701 − 31714. doi: 10.1074/jbc.M113.499228 |
[8] |
ZHANG T, POUDEL A N, JEWELL J B, et al. Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2016, 67(7): 2107 − 2120. doi: 10.1093/jxb/erv521 |
[9] |
PATKAR R N, BENKE P I, QU Z, et al. A fungal monooxygenase-derived jasmonate attenuates host innate immunity[J]. Nature Chemical Biology, 2015, 11(9): 733 − 740. doi: 10.1038/nchembio.1885 |
[10] |
SMIRNOVA E, MARQUIS V, POIRIER L, et al. Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection[J]. Molecular Plant, 2017, 10(9): 1159 − 1173. doi: 10.1016/j.molp.2017.07.010 |
[11] |
ZHANG X, WANG D, ELBERSE J, et al. Structure-guided analysis of Arabidopsis jasmonate induced oxygenase (JOX) 2 reveals key residues for recognition of jasmonic acid substrate by plant JOXs[J]. Molecular Plant, 2021, 14(5): 820 − 828. doi: 10.1016/j.molp.2021.01.017 |
[12] |
KAWAI Y, ONO E, MIZUTANI M. Evolution and diversity of the 2‐oxoglutarate‐dependent dioxygenase superfamily in plants[J]. The Plant Journal, 2014, 78(2): 328 − 343. doi: 10.1111/tpj.12479 |
[13] |
NDECKY S, MALHERBE L, VILLETTE C, et al. Rice jasmonic acid oxidases (OsJAO) control resting jasmonate metabolism to promote development and repress basal immune responses[EB/OL]. America: bioRxiv, (2024-07-24)[2024-12-25]. http://biorxiv.org/lookup/doi/10.1101/2024.07.24.604933. |
[14] |
TANG J, YANG D, WU J, et al. Silencing JA hydroxylases in Nicotiana attenuate enhances jasmonic acid-isoleucine-mediated defenses against Spodoptera litura[J]. Plant Diversity, 2020, 42(2): 111 − 119. doi: 10.1016/j.pld.2019.11.005 |
[15] |
刘盟盟, 赵佩, 陈伟, 等. 棉花茉莉酸氧化酶基因GhJOX2参与抗黄萎病的功能分析[J]. 中国科学: 生命科学, 2022, 52(4): 523 − 533. |
[16] |
ZHU T, HERRFURTH C, XIN M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth[J]. Nature Communications, 2021, 12(1): 4804. doi: 10.1038/s41467-021-24883-2 |
[17] |
NASSAR N M A. Cassava, Manihot esculenta Crantz, genetic resources: origin of the crop, its evolution and relationships with wild relatives[J]. Genetics and Molecular Research, 2002, 1(4): 298 − 305. |
[18] |
BAEYENS J, KANG Q, APPELS L, et al. Challenges and opportunities in improving the production of bio-ethanol[J]. Progress in Energy and Combustion Science, 2015, 47: 60 − 88. doi: 10.1016/j.pecs.2014.10.003 |
[19] |
徐宇佳, 徐锦玲, 李丛希, 等. 世界木薯产业政策新动向及对中国的启示[J]. 中国热带农业, 2023(6): 5 − 11. doi: 10.3969/j.issn.1673-0658.2023.06.007 |
[20] |
MISTRY J, FINN R D, EDDY S R, et al. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions[J]. Nucleic Acids Research, 2013, 41(12): e121. doi: 10.1093/nar/gkt263 |
[21] |
EDGAR R C. Muscle5: high-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny[J]. Nature Communications, 2022, 13(1): 6968. doi: 10.1038/s41467-022-34630-w |
[22] |
CAPELLA-GUTIéRREZ S, SILLA-MARTíNEZ J M, GABALDóN T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15): 1972 − 1973. doi: 10.1093/bioinformatics/btp348 |
[23] |
NGUYEN L T, SCHMIDT H A, VON HAESELER A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268 − 274. doi: 10.1093/molbev/msu300 |
[24] |
CHEN C, WU Y, LI J, et al. TBtools-Ⅱ: a “one for all, all for one” bioinformatics platform for biological big-data mining[J]. Molecular Plant, 2023, 16(11): 1733 − 1742. doi: 10.1016/j.molp.2023.09.010 |
[25] |
LESCOT M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325 − 327. doi: 10.1093/nar/30.1.325 |
[26] |
BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME Suite[J]. Nucleic Acids Research, 2015, 43(W1): W39 − W49. doi: 10.1093/nar/gkv416 |
[27] |
NYE D G, IRIGOYEN M L, PEREZ-FONS L, et al. Integrative transcriptomics reveals association of abscisic acid and lignin pathways with cassava whitefly resistance[J]. BMC Plant Biology, 2023, 23(1): 657. doi: 10.1186/s12870-023-04607-y |
[28] |
ZHANG R, CHEN X, WANG Y, et al. Genome-wide identification of hormone biosynthetic and metabolism genes in the 2OGD family of tobacco and JOX genes silencing enhances drought tolerance in plants[J]. International Journal of Biological Macromolecules, 2024, 280(P2): 135731. |
[29] |
JEFFARES D C, PENKETT C J, BäHLER J. Rapidly regulated genes are intron poor[J]. Trends in Genetics, 2008, 24(8): 375 − 378. doi: 10.1016/j.tig.2008.05.006 |
[30] |
LI C, DU J, XU H, et al. UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis[J]. Journal of Integrative Plant Biology, 2024, 66(5): 897 − 908. doi: 10.1111/jipb.13648 |