| [1] | 何康, 黄宗道. 热带北缘橡胶树栽培[M]. 广州: 广东科技出版社, 1987. (查阅网上资料, 未找到本条文献页码信息, 请补充) |
| [2] | 卫晋瑶, 郑红裕, 石钰欣. 2024年我国天然橡胶产业形势分析及未来展望[J]. 中国热带农业, 2025(2): 17 − 22. doi: 10.3969/j.issn.1673-0658.2025.02.004 |
| [3] | LI S N, ZOU F S, ZHANG Q, et al. Species richness and guild composition in rubber plantations compared to secondary forest on Hainan Island, China[J]. Agroforestry Systems, 2013, 87(5): 1117 − 1128. doi: 10.1007/s10457-013-9624-y |
| [4] | SINGH A K, LIU W J, ZAKARI S, et al. A global review of rubber plantations: impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation[J]. Science of the Total Environment, 2021, 796: 148948. doi: 10.1016/j.scitotenv.2021.148948 |
| [5] | WANG J C, REN C Q, CHENG H T, et al. Conversion of rainforest into agroforestry and monoculture plantation in China: consequences for soil phosphorus forms and microbial community[J]. Science of the Total Environment, 2017, 595: 769 − 778. doi: 10.1016/j.scitotenv.2017.04.012 |
| [6] | 桂明春, 邱彦芬, 唐敏, 等. 育苗措施对橡胶树小苗芽接苗生长的影响[J]. 热带作物学报, 2021, 42(5): 1387 − 1393. doi: 10.3969/j.issn.1000-2561.2021.05.026 |
| [7] | 谢瑾, 李朝丽, 李永梅, 等. 纳板河流域不同土地利用类型土壤质量评价[J]. 应用生态学报, 2011, 22(12): 3169 − 3176. doi: 10.13287/j.1001-9332.2011.0443 |
| [8] | 郑伟. 植物幼苗生长对策研究[D]. 长春: 东北师范大学, 2011. |
| [9] | 唐菁, 杨承栋, 康红梅. 植物营养诊断方法研究进展[J]. 世界林业研究, 2005, 18(6): 45 − 48. doi: 10.3969/j.issn.1001-4241.2005.06.007 |
| [10] | 解淑贞. 蔬菜营养及其诊断[M]. 上海: 上海科学技术出版社, 1986. (查阅网上资料, 未找到本条文献页码信息, 请补充) |
| [11] | 华元刚, 陈秋波, 林钊沐, 等. 水肥耦合对橡胶树产胶量的影响[J]. 应用生态学报, 2008, 19(6): 1211 − 1216. |
| [12] | 陈艳彬, 张永发, 王文斌, 等. 橡胶树叶片氮素营养特性及其对施氮量的响应[J]. 热带作物学报, 2019, 40(5): 831 − 838. doi: 10.3969/j.issn.1000-2561.2019.05.001 |
| [13] | GE S F, XU H G, JI M M, et al. Characteristics of soil organic carbon, total nitrogen, and C/N ratio in Chinese apple orchards[J]. Open Journal of Soil Science, 2013, 3(5): 213 − 217. doi: 10.4236/ojss.2013.35025 |
| [14] | 张凌霄, 李云, 赵家连, 等. 不同施肥措施对天然生胶性能的影响[J]. 中国土壤与肥料, 2023(12): 158 − 164. doi: 10.11838/sfsc.1673-6257.22749 |
| [15] | 罗雪华, 邹碧霞, 吴菊群, 等. 氮水平和形态配比对巴西橡胶树花药苗生长及氮代谢、光合作用的影响[J]. 植物营养与肥料学报, 2011, 17(3): 693 − 701. doi: 10.11674/zwyf.2011.0259 |
| [16] | 赵春梅, 蒋菊生, 曹建华. 橡胶林氮素研究进展[J]. 热带农业科学, 2009, 29(3): 44 − 50. doi: 10.3969/j.issn.1009-2196.2009.03.011 |
| [17] | GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889 − 892. doi: 10.1126/science.1136674 |
| [18] | VITOUSEK P M, NAYLOR R, CREWS T, et al. Nutrient imbalances in agricultural development[J]. Science, 2009, 324(5934): 1519 − 1520. doi: 10.1126/science.1170261 |
| [19] | DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 2016, 7(1): 10541. doi: 10.1038/ncomms10541 |
| [20] | 白欣荣, 杨钧, 马巧蓉, 等. 宁夏南华山草地造林林龄对土壤真菌群落的影响[J/OL]. 应用与环境生物学报, (2025-02-19)[2025-09-29]. https://doi.org/10.19675/j.cnki.1006-687x.2024.09014. |
| [21] | 刘东海, 张智, 梅亮贤, 等. 不同施氮水平对冬油菜根际微生物群落特征的影响[J]. 植物营养与肥料学报, 2024, 30(10): 1898 − 1908. doi: 10.11674/zwyf.2024110 |
| [22] | 杜超, 陈德, 张园莉, 等. 接种AM真菌对蓝莓苔藓苗生长发育及生理特性的影响[J]. 耕作与栽培, 2025, 45(4): 7 − 10. doi: 10.13605/j.cnki.52-1065/s.2025.04.002 |
| [23] | 宫丽丹, 马静, 吴超, 等. 丛枝菌根真菌对澳洲坚果幼苗生长及光合特性的影响[J]. 热带农业科技, 2025, 48(2): 25 − 29. doi: 10.16005/j.cnki.tast.2025.02.005 |
| [24] | JIANG Y Y, ZHENG Y, TANG L, et al. Rhizosphere biological processes of legume//cereal intercropping systems: a review[J]. Journal of Agricultural Resources and Environment, 2016, 33(5): 407-415. doi:10.13254/j.jare.2016.0121 |
| [25] | 华元刚, 林清火, 罗微, 等. 氮素供应对橡胶树根系生长的影响[J]. 中国农学通报, 2006, 22(6): 421 − 424. doi: 10.3969/j.issn.1000-6850.2006.06.107 |
| [26] | 贝美容, 罗雪华, 杨红竹. AA3型连续流动分析仪(CFA)同时测定橡胶叶全氮、全磷、全钾的方法研究[J]. 热带作物学报, 2011, 32(7): 1258 − 1264. doi: 10.3969/j.issn.1000-2561.2011.07.015 |
| [27] | 曾维军, 刘燕, 罗文敏, 等. 土壤利用类型和海拔对油茶根围土壤细菌和真菌多样性的影响[J]. 江苏农业科学, 2023, 51(10): 227 − 236. doi: 10.15889/j.issn.1002-1302.2023.10.031 |
| [28] | 李鹏飞, 张兴昌, 郝明德, 等. 植被恢复对黄土高原矿区重构土壤理化性质、酶活性以及真菌群落的影响[J]. 水土保持通报, 2019, 39(5): 1 − 7. doi: 10.13961/j.cnki.stbctb.2019.05.001 |
| [29] | 张叶. 不同施氮水平对土壤微生物及油菜生育后期氮素代谢的影响[D]. 长沙: 湖南农业大学, 2021. doi: 10.27136/d.cnki.ghunu.2021.000105 |
| [30] | GUO J J, LIU W B, ZHU C, et al. Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments[J]. Plant and Soil, 2018, 424(1): 335 − 349. doi: 10.1007/s11104-017-3547-8 |
| [31] | 杜昊楠, 陈伟, 兰国玉, 等. 海南热带雨林土壤真菌时空分布格局[J]. 生态学杂志, 2021, 40(8): 2450 − 2459. doi: 10.13292/j.1000-4890.202108.002 |
| [32] | SHI Y W, NIU X X, CHEN B Z, et al. Chemical fertilizer reduction combined with organic fertilizer affects the soil microbial community and diversity and yield of cotton[J]. Frontiers in Microbiology, 2023, 14: 1295722. doi: 10.3389/fmicb.2023.1295722 |
| [33] | FONTAINE S, HÉNAULT C, AAMOR A, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect[J]. Soil Biology and Biochemistry, 2011, 43(1): 86 − 96. doi: 10.1016/j.soilbio.2010.09.017 |
| [34] | PAUNGFOO-LONHIENNE C, YEOH Y K, KASINADHUNI N R P, et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere[J]. Scientific Reports, 2015, 5(1): 8678. doi: 10.1038/srep08678 |
| [35] | ELDRIDGE D J, DELGADO‐BAQUERIZO M, TRAVERS S K, et al. Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores[J]. Ecology, 2017, 98(7): 1922 − 1931. doi: 10.1002/ecy.1879 |
| [36] | 詹杉, 吴敏, 马海洋, 等. 不同产量水平橡胶林土壤微生物群落组成及多样性研究[J]. 热带作物学报, 2024, 45(12): 2646 − 2658. doi: 10.3969/j.issn.1000-2561.2024.12.017 |
| [37] | KENNEDY A C, SMITH K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant and Soil, 1995, 170(1): 75 − 86. doi: 10.1007/BF02183056 |
| [38] | 许姗姗, 杨光柱, 阚望, 等. 应用高通量测序分析云南昭通不同栽培模式苹果园根际土壤微生物种群[J]. 西南农业学报, 2019, 32(7): 1512 − 1517. doi: 10.16213/j.cnki.scjas.2019.7.009 |
| [39] | ANDERSON I C, CAIRNEY J W G. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques[J]. Environmental Microbiology, 2004, 6(8): 769 − 779. doi: 10.1111/j.1462-2920.2004.00675.x |
| [40] | SUN R B, DSOUZA M, GILBERT J A, et al. Fungal community composition in soils subjected to long‐term chemical fertilization is most influenced by the type of organic matter[J]. Environmental Microbiology, 2016, 18(12): 5137 − 5150. doi: 10.1111/1462-2920.13512 |
| [41] | ZHANG Y Y, ZHAO F Y, FENG C, et al. Effects of maize/peanut intercropping and nitrogen fertilizer application on soil fungal community structure[J]. Agronomy, 2024, 14(5): 1053. doi: 10.3390/agronomy14051053 |
| [42] | LIAO L R, WANG X T, WANG J, et al. Nitrogen fertilization increases fungal diversity and abundance of saprotrophs while reducing nitrogen fixation potential in a semiarid grassland[J]. Plant and Soil, 2021, 465(1/2): 515 − 532. doi: 10.1007/s11104-021-05012-w |
| [43] | 刘思博, 殷国梅, 冀超, 等. 不同浓度氮肥对首年紫花苜蓿产量及其根际土壤真菌群落结构的影响[J]. 中国土壤与肥料, 2023(1): 1 − 12. doi: 10.11838/sfsc.1673-6257.21652 |