[1] |
张正梁, 尹华. 文心兰分株繁殖和控花栽培[J]. 中国花卉园艺, 2003(12): 26 − 27. |
[2] |
CHIN D C, HSIEH C C, LIN H Y, et al. A low glutathione redox state couples with a decreased ascorbate redox ratio to accelerate flowering in Oncidium orchid[J]. Plant & Cell Physiology, 2016, 57(2): 423 − 436. |
[3] |
张海良. 兰花芽分化的分子机理和相关功能基因克隆 [D]. 广州: 华南农业大学, 2018. |
[4] |
董晓宇, 张晶, 符真珠, 等. 蝴蝶兰腋芽增殖过程中的转录组特性[J]. 基因组学与应用生物学, 2018, 37(3): 1265 − 1270. |
[5] |
LI Z, XIAO W, CHEN H, et al. Transcriptome analysis reveals endogenous hormone changes during spike development in Phalaenopsis[J]. International Journal of Molecular Sciences, 2022, 23(18): 10461. |
[6] |
FAN Z, LI J, LI X, et al. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea[J]. Scientific Reports, 2015, 5: 9729. |
[7] |
石玉波. 百子莲花芽分化过程中比较转录组分析及开花相关基因的克隆 [D]. 哈尔滨: 东北林业大学, 2014. |
[8] |
POCHAMREDDY M, HAIM D, HALON E, et al. Alternate bearing in ‘hass’ avocado: fruit load-induced changes in bud auxin homeostasis are associated with flowering repression[J]. Journal of Experimental Botany, 2024, 75(18): 5717 − 5733. |
[9] |
CHANDLER J W. The hormonal regulation of flower development[J]. Journal of Plant Growth Regulation, 2011, 30(2): 242 − 254. |
[10] |
LI Y, ZHANG B, YU H. Molecular genetic insights into orchid reproductive development[J]. Journal of Experimental Botany, 2022, 73(7): 1841 − 1852. |
[11] |
史梅容, 舒文波, 邱明萱, 等. 兰花花器官及成花基因调控研究进展[J]. 中国农业大学学报, 2023, 28(7): 57 − 67. doi: 10.11841/j.issn.1007-4333.2023.07.05 |
[12] |
罗远华, 王振波, 黄敏玲, 等. 文心兰不同生育期茎叶生理指标的动态变化[J]. 福建农业学报, 2017, 32(7): 719 − 723. |
[13] |
MOUHU K, KUROKURA T, KOSKELA E A, et al. The Fragaria vesca homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 represses flowering and promotes vegetative growth[J]. The Plant Cell, 2013, 25(9): 3296 − 3310. doi: 10.1105/tpc.113.115055 |
[14] |
FENG J, WANG Y, GE W, et al. Regulatory mechanism of the miR172e-LbrAP2 module during the vegetative growth phase transition in Lilium[J]. Planta, 2023, 259(1): 26. |
[15] |
史绍林. 红松营养生长与生殖生长转换中植物激素动态研究 [D]. 哈尔滨: 东北林业大学, 2020. |
[16] |
CHEN S, ZHOU Y, CHEN Y, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884 − i890. doi: 10.1093/bioinformatics/bty560 |
[17] |
金洲, 卢山, 江俊浩, 等. 园艺植物花芽分化影响因素及机理研究进展[J]. 园艺学报, 2023, 50(5): 1151 − 1164. |
[18] |
李川, 王瑞娴, 崔鸣. 花魔芋花芽和叶芽的转录组分析[J]. 分子植物育种, 2020, 18(16): 5315 − 5322. |
[19] |
PEI L, GAO Y, FENG L, et al. Phenolic acids and flavonoids play important roles in flower bud differentiation in Mikania micrantha: transcriptomics and metabolomics[J]. International Journal of Molecular Sciences, 2023, 24(23): 16550. doi: 10.3390/ijms242316550 |
[20] |
LIU W, FENG Y, YU S, et al. The flavonoid biosynthesis network in plants[J]. International Journal of Molecular Sciences, 2021, 22(23): 12824. doi: 10.3390/ijms222312824 |
[21] |
LI W, XU P, QIAN C, et al. The combined analysis of the transcriptome and metabolome revealed the possible mechanism of flower bud formation in Amorphophallus bulbifer[J]. Agronomy, 2024, 14(3): 519. doi: 10.3390/agronomy14030519 |
[22] |
石长双. 马尾松短枝腋芽萌发关键基因的挖掘 [D]. 贵阳: 贵州大学, 2020. |
[23] |
邹礼平, 潘铖, 王梦馨, 等. 激素调控植物成花机理研究进展[J]. 遗传, 2020, 42(8): 739 − 751. |
[24] |
CHAO W S, DOĞRAMACI M, HORVATH D P, et al. Phytohormone balance and stress-related cellular responses are involved in the transition from bud to shoot growth in leafy spurge[J]. BMC Plant Biology, 2016, 16: 47. doi: 10.1186/s12870-016-0735-2 |
[25] |
TONG N, SHU Q, WANG B, et al. Histology, physiology, and transcriptomic and metabolomic profiling reveal the developmental dynamics of annual shoots in tree peonies (Paeonia suffruticosa Andr. )[J]. Horticulture Research, 2023, 10(9): uhad152. doi: 10.1093/hr/uhad152 |
[26] |
DHARMASIRI N, DHARMASIRI S, ESTELLE M. The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 441 − 445. |
[27] |
CHAPMAN E J, ESTELLE M. Mechanism of auxin-regulated gene expression in plants[J]. Annual Review of Genetics, 2009, 43: 265 − 285. doi: 10.1146/annurev-genet-102108-134148 |
[28] |
SWARUP R, PARRY G, GRAHAM N, et al. Auxin cross-talk: integration of signalling pathways to control plant development[J]. Plant Molecular Biology, 2002, 49(3/4): 411 − 426. |
[29] |
WERNER T, MOTYKA V, LAUCOU V, et al. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J]. The Plant Cell, 2003, 15(11): 2532 − 2550. doi: 10.1105/tpc.014928 |
[30] |
ZHANG Y J, NIE C R, GUO W J, et al. Exploring flowering genes in Phalaenopsis through transcriptome analysis and critical gene validation of hormone signal transduction pathway[J]. Russian Journal of Plant Physiology, 2023, 70(3): 25. doi: 10.1134/S1021443722601938 |
[31] |
徐东东, 东琳, 邵丽, 等. TGA转录因子在调控植物逆境应答和生长发育中的作用研究进展[J]. 植物生理学报, 2024, 60(7): 1079 − 1086. |
[32] |
AMASINO R. Seasonal and developmental timing of flowering[J]. The Plant Journal, 2010, 61(6): 1001 − 1013. doi: 10.1111/j.1365-313X.2010.04148.x |
[33] |
LYONS R, RUSU A, STILLER J, et al. Investigating the association between flowering time and defense in the Arabidopsis thaliana-Fusarium oxysporum interaction[J]. PLoS One, 2015, 10(6): e0127699. doi: 10.1371/journal.pone.0127699 |
[34] |
LIM M H, KIM J, KIM Y S, et al. A new Arabidopsis gene, FLK encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C[J]. The Plant Cell, 2004, 16(3): 731 − 740. doi: 10.1105/tpc.019331 |
[35] |
XIE W, DING C, HU H, et al. Molecular events of rice AP2/ERF transcription factors[J]. International Journal of Molecular Sciences, 2022, 23(19): 12013. doi: 10.3390/ijms231912013 |
[36] |
MEHRNIA M, BALAZADEH S, ZANOR M I, et al. EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis[J]. Plant Physiology, 2013, 162(2): 842 − 857. doi: 10.1104/pp.113.214049 |
[37] |
李元元, 王鲁, 苏振刚, 等. MADS-box基因控制植物成花的分子机理[J]. 基因组学与应用生物学, 2010, 29(6): 1122 − 1132. doi: 10.3969/gab.029.001122 |
[38] |
THIRUVENGADAM M, CHUNG I M, YANG C H. Overexpression of Oncidium MADS box (OMADS1) gene promotes early flowering in transgenic orchid (Oncidium Gower Ramsey)[J]. Acta Physiologiae Plantarum, 2012, 34(4): 1295 − 1302. doi: 10.1007/s11738-012-0926-x |
[39] |
HSU H F, HSIEH W P, CHEN M K, et al. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2010, 51(6): 1029 − 1045. doi: 10.1093/pcp/pcq052 |