[1] ATANGANA A, KHASA D, CHANG S, et al. Major land use issues in the tropics, and the history of agroforestry[M]//ATANGANA A, KHASA D, CHANG S, et al. Tropical agroforestry. Dordrecht: Springer, 2014: 23−33. doi: 10.1007/978-94-007-7723-1_2
[2] RAMACHANDRAN NAIR P K, KUMAR B M, NAIR V D. Definition and concepts of agroforestry[M]//RAMACHANDRAN NAIR P K, MOHAN KUMAR B, NAIR V D. An introduction to agroforestry: four decades of scientific developments. Cham: Springer, 2021: 21−28. doi: 10.1007/978-3-030-75358-0_2
[3] LUNDGREN B, RAINTREE J B. Sustained agroforestry[M]//NESTEL B. Agricultural research for development: potentials and challenges in Asia. The Hague: International Service for National Agricultural Research, 1983: 37−49.
[4] KHASA D. Bringing agroforestry into the 21st century: an overview[C]//Proceedings of the 6th north American agroforestry conference. Arkansas, USA: Hot Springs, 1999: 19−27. (查阅网上资料, 未找到本条文献信息, 请确认)
[5] WEST P C, GIBBS H K, MONFREDA C, et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19645 − 19648. doi:  10.1073/pnas.1011078107
[6] KEENAN R J, REAMS G A, ACHARD F, et al. Dynamics of global forest area: results from the FAO global forest resources assessment 2015[J]. Forest Ecology and Management, 2015, 352: 9 − 20. doi:  10.1016/j.foreco.2015.06.014
[7] MURPHY D J, GOGGIN K, PATERSON R R M. Oil palm in the 2020s and beyond: challenges and solutions[J]. CABI Agriculture and Bioscience, 2021, 2(1): 39. doi:  10.1186/s43170-021-00058-3
[8] GOBILIK J, BACO H, KABUL M A, et al. Feed profile analysis of oil palm-integrated beef cattle farming systems by metabolic energy budgeting and implications for beef production and pastoral system design[J]. Grassland Research, 2023, 2(1): 56 − 68. doi:  10.1002/glr2.12044
[9] DA SILVA MAIA R, VASCONCELOS S S, VIANA-JUNIOR A B, et al. Oil palm (Elaeis guineensis) shows higher mycorrhizal colonization when planted in agroforestry than in monoculture[J]. Agroforestry Systems, 2021, 95(4): 731 − 740. doi:  10.1007/s10457-021-00627-5
[10] DE CARVALHO W R, VASCONCELOS S S, KATO O R, et al. Short-term changes in the soil carbon stocks of young oil palm-based agroforestry systems in the eastern Amazon[J]. Agroforestry Systems, 2014, 88(2): 357 − 368. doi:  10.1007/s10457-014-9689-2
[11] 向文倩, 王文娟, 任明迅. 木棉文化的生物多样性传统知识及其传承与利用[J]. 生物多样性, 2023, 31(3): 22524. doi:  10.17520/biods.2022524
[12]

WANG W J, WEN J, XIANG W Q, et al. Soil bacterial and fungal communities respond differently to Bombax ceiba (Malvaceae) during reproductive stages of rice in a traditional agroforestry system[J]. Plant and Soil, 2022, 479(1): 543 − 558. doi:  10.1007/s11104-022-05542-x
[13] 任明迅, 向文倩, 王文娟, 等. 木棉稻田农林复合系统传统技艺与生态学研究[M]. 武汉: 华中科技大学出版社, 2024. (查阅网上资料, 未找到本条文献信息, 请确认)
[14]

LIU C A, NIE Y, ZHANG Y M, et al. Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environments[J]. Scientific Reports, 2018, 8(1): 17324. doi:  10.1038/s41598-018-35762-0
[15] 王纪坤, 兰国玉, 陈帮乾, 等. 海南橡胶林林下药用植物资源调查[J]. 南方农业学报, 2013, 44(3): 391 − 396. doi:  10.3969/j:issn.2095-1191.2013.3.391
[16] 岩香甩, 田耀华, 原慧芳, 等. 西双版纳橡胶林下药用植物资源调查分析[J]. 浙江林业科技, 2018, 38(1): 96 − 101. doi:  10.3969/j.issn.1001-3776.2018.01.015
[17]

DENDENA B, CORSI S. Cashew, from seed to market: a review[J]. Agronomy for Sustainable Development, 2014, 34(4): 753 − 772. doi:  10.1007/s13593-014-0240-7
[18]

OPOKU-AMEYAW K, OPPONG F K, AMOAH F M, et al. Growth and early yield of cashew intercropped with food crops in northern Ghana[J]. Journal of Tropical Agriculture, 2011, 49: 53 − 7.
[19]

RAMTEKE V, THAKUR P, KERKETTA A, et al. Assessment of cashew-based intercropping system in chhattisgarh, India[J]. National Academy Science Letters, 2022, 45(6): 485 − 489. doi:  10.1007/s40009-022-01179-7
[20]

SASIDHARAN S. Teak plantations and wood production[M]//RAMASAMY Y, GALEANO E, WIN T T. The teak genome. Cham: Springer, 2021: 13−25. doi:  10.1007/978-3-030-79311-1_2
[21]

ROSHETKO J M, ROHADI D, PERDANA A, et al. Teak agroforestry systems for livelihood enhancement, industrial timber production, and environmental rehabilitation[J]. Forests, Trees and Livelihoods, 2013, 22(4): 241 − 256. doi:  10.1080/14728028.2013.855150
[22]

WARRIER R R, SINHA A, THAKUR A, et al. Smallholder teak agroforestry in the globalising world: opportunities and challenges for India[J]. Agriculture and Forestry Journal, 2022, 6(1): 32 − 40. doi:  10.46325/afj.v6i1.13
[23]

HEALEY S P, GARA R I. The effect of a teak (Tectona grandis) plantation on the establishment of native species in an abandoned pasture in Costa Rica[J]. Forest Ecology and Management, 2003, 176(1/3): 497 − 507. doi:  10.1016/S0378-1127(02)00235-9
[24]

BIRHANU S, KUMSA F. Review on expansion of Eucalyptus, its economic value and related environmental issues in Ethiopia[J]. International Journal of Research in Environmental Science, 2018, 4(3): 41 − 46. doi:  10.20431/2454-9444.0403005
[25]

RAMESH K R, DESHMUKH H K, SIVAKUMAR K, et al. Influence of Eucalyptus agroforestry on crop yields, soil properties, and system economics in Southern Regions of India[J]. Sustainability, 2023, 15(4): 3797. doi:  10.3390/su15043797
[26]

MUÑOZ-VILLERS L E, GERIS J, ALVARADO-BARRIENTOS M S, et al. Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem[J]. Hydrology and Earth System Sciences, 2020, 24(4): 1649 − 1668. doi:  10.5194/hess-24-1649-2020
[27]

BOTE A D, STRUIK P C. Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia[J]. Journal of Horticulture and Forestry, 2011, 3(11): 336 − 341.
[28]

PERDONÁ M J, SORATTO R P. Higher yield and economic benefits are achieved in the macadamia crop by irrigation and intercropping with coffee[J]. Scientia Horticulturae, 2015, 185: 59 − 67. doi:  10.1016/j.scienta.2015.01.007
[29]

GATTI N, GOMEZ M I, BENNETT R E, et al. Eco-labels matter: coffee consumers value agrochemical-free attributes over biodiversity conservation[J]. Food Quality and Preference, 2022, 98: 104509. doi:  10.1016/j.foodqual.2021.104509
[30]

ASARE R, MARKUSSEN B, ASARE R A, et al. On-farm cocoa yields increase with canopy cover of shade trees in two agro-ecological zones in Ghana[J]. Climate and Development, 2019, 11(5): 435 − 445. doi:  10.1080/17565529.2018.1442805
[31]

KOUASSI A T, BOKO A C E, BLEI S H, et al. Influence of shade in cocoa agroforestry systems on physicochemical and functional characteristics of cocoa beans in bonon, central-west Côte d’Ivoire[J]. International Journal of Food Science, 2024, 2024(1): 1543904. doi:  10.1155/2024/1543904
[32]

NIETHER W, JACOBI J, BLASER W J, et al. Cocoa agroforestry systems versus monocultures: a multi-dimensional meta-analysis[J]. Environmental Research Letters, 2020, 15(10): 104085. doi:  10.1088/1748-9326/abb053
[33]

GEBAUER J. Plant species diversity of home gardens in El Obeid, Central Sudan[J]. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 2005, 106(2): 97 − 103.
[34]

DHARA P K, SHARMA B. Evaluation of mango based agroforestry is an ideal model for sustainable agriculture in red & laterite soil[J]. Journal of Pure and Applied Microbiology, 2015, 9(S2): 265 − 272.
[35]

FADL K E M, EL SHEIKH S E. Effect of Acacia senegal on growth and yield of groundnut, sesame and Roselle in an agroforestry system in North Kordofan state, Sudan[J]. Agroforestry Systems, 2010, 78(3): 243 − 252. doi:  10.1007/s10457-009-9243-9
[36]

WIBAWA G, JOSHI L, VAN NOORDWIJK M, et al. Rubber based agroforestry systems (RAS) as alternatives for rubber monoculture system[C]//Proceedings of the IRRDB annual conference. 2006. (查阅网上资料, 未找到对应的出版信息, 请确认)
[37]

VAN NOORDWIJK M, ONG C K. Can the ecosystem mimic hypotheses be applied to farms in African savannahs?[J]. Agroforestry Systems, 1999, 45(1/3): 131 − 158. doi:  10.1023/A:1006245605705
[38]

ZOMER R J, BOSSIO D A, TRABUCCO A, et al. Trees and water: smallholder agroforestry on irrigated lands in Northern India[R]. Colombo, Sri Lanka: International Water Management Institute, 2007.
[39]

MCINTYRE B D, HERREN H R, WAKHUNGU J, et al. Agriculture at a crossroads: the global report[R]. Washington: International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD), 2009.
[40]

CISSÉ M I. Les parcs agroforestiers au Mali. Etat des connaissances et perspectives pour leur amélioration[R]. Nairobi: ICRAF, 1995.
[41]

BOFFA J M. Agroforestry parklands in sub-Saharan Africa[R]. Rome: FAO, 1999.
[42]

BEER J, IBRAHIM M, SCHLÖNVOIGT A. Timber production in tropical agroforestry systems of Central America[M]//KRISHNAPILLAY B, SOEPADMO E, LOTFY ARSHAD N, et al. Forests and society: the role of research. vol 1 subplenary sessions. XXI IUFRO world congress. Kuala Lumpur: IUFRO, 2000: 777−786. (查阅网上资料, 请核对标黄作者信息)
[43]

PENDRILL F, PERSSON U M, GODAR J, et al. Agricultural and forestry trade drives large share of tropical deforestation emissions[J]. Global Environmental Change, 2019, 56: 1 − 10. doi:  10.1016/j.gloenvcha.2019.03.002
[44]

SANIAL E. A la recherche de l'ombre, géographie des systèmes agroforestiers émergents en cacaoculture ivoirienne post-forestière[D]. Lyon: Université Jean Moulin Lyon 3, 2019.