[1] 钟群有, 郑卓辉, 彭增明, 等. 香蕉枯萎病生物防治研究概述[J]. 广东农业科学, 2007(7): 64 − 65. doi:  10.3969/j.issn.1004-874X.2007.07.022
[2]

PLOETZ R C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. Cubense [J]. Phytopathology, 2006, 96(6): 648. doi:  10.1094/PHYTO-96-0648
[3]

NEL B, STEINBERG C, LABUSCHAGNE N, et al. The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing fusarium wilt of banana [J]. Plant Pathology, 2006, 55(2): 217 − 223. doi:  10.1111/j.1365-3059.2006.01344.x
[4]

THANGAVELU R, PALANISWAMI A, VELAZHAHAN R. Mass production of Trichoderma harzianum for managing fusarium wilt of banana. Agriculture [J]. Ecosystems and Environment, 2004, 103(1): 259 − 263. doi:  10.1016/j.agee.2003.09.026
[5] 汪军, 王国芬, 杨腊英, 等. 施用淡紫拟青霉与套作对香蕉枯萎病控病作用的影响[J]. 果树学报, 2013, 30(5): 857 − 864.
[6] 刘磊, 梁昌聪, 覃和业, 等. 香蕉枯萎病田间发病株的高效灭菌方法筛选[J]. 植物保护学报, 2015, 42(3): 362 − 369.
[7] 孙雪丽, 郝向阳, 王天池, 等. 香蕉枯萎病防控和抗病育种研究进展[J]. 果树学报, 2018, 35(7): 870 − 879.
[8] 蒲金基, 刘晓妹, 曾会才. 香蕉抗枯萎病育种研究进展[J]. 中国南方果树, 2003(1): 31 − 34. doi:  10.3969/j.issn.1007-1431.2003.01.020
[9] 齐兴柱, 杨腊英, 黄俊生. Foc4的2个过氧化氢酶基因的克隆与表达分析及其引起的香蕉苗活性氧迸发研究[J]. 中国农学通报, 2012, 28(15): 163 − 169. doi:  10.3969/j.issn.1000-6850.2012.15.032
[10] 王飞燕. 香蕉尖孢镰刀菌fpd1基因敲除与功能研究[D].海口: 海南大学, 2015.
[11]

DONG Z, WANG Z. Isolation and characterization of an exopolygalacturonase from Fusarium oxysporum f.sp. cubense race 1 and race 4 [J]. BMC Biochemistry, 2011, 12(1): 51. doi:  10.1186/1471-2091-12-51
[12]

PIETRO A D, GARCIA-MACEIRA F I, MEGLECZ E, et al. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis [J]. Molecular Microbiology, 2001, 39(5): 1140 − 1152. doi:  10.1111/j.1365-2958.2001.02307.x
[13]

DING Z J, LI M, SUN F, et al. Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense [J]. Plos One, 2015, 10(4): e0122634. doi:  10.1371/journal.pone.0122634
[14] 杨平, 李敏惠, 潘克俭, 等. 海藻糖的生物合成与分解途经及其生物学功能[J]. 生命的化学, 2006(3): 233 − 236. doi:  10.3969/j.issn.1000-1336.2006.03.014
[15]

GANCEDO C, FLORES C L. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi [J]. FEMS Yeast Research, 2004, 4(4-5): 351 − 359. doi:  10.1016/S1567-1356(03)00222-8
[16] 谢夏青, 李志勇, 马继芳, 等. 谷子弯孢菌海藻糖酶基因(ClTRE)及其启动子的克隆和序列分析[J]. 生物技术通报, 2011(7): 154 − 159.
[17]

WOLSKA-MITASZKO B, MOLESTAK E. Properties of trehalase from different organs of alfalfa, Medicago sativa [J]. Acta Physiologiae Plantarum, 2005, 27(1): 53 − 60. doi:  10.1007/s11738-005-0036-0
[18] 任媛媛, 刘景芳, 戴秀玉, 等. 海藻糖代谢途径相关基因及生物工程[J]. 微生物学报, 2003(6): 821 − 825. doi:  10.3321/j.issn:0001-6209.2003.06.024
[19]

MITTENBÜHLER K, HOLZER H. Purification and characterization of acid trehalase from the yeast suc2 mutant [J]. The Journal of biological chemistry, 1988, 263(17): 8537 − 8543.
[20]

KOPP M, MÜLLER H, HOLZER H. Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae [J]. The Journal of biological chemistry, 1993, 268(7): 4766 − 4774.
[21]

RUIJTER G, FILLINGER S, THEVELEIN J, et al. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans [J]. Microbiology, 2001, 147(7): 1851 − 1862. doi:  10.1099/00221287-147-7-1851
[22]

AURORA OCÓN, RÜDIGER HAMPP, REQUENA N. Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi [J]. New Phytologist, 2007, 174(4): 879 − 891. doi:  10.1111/j.1469-8137.2007.02048.x
[23]

DOEHLEMANN G. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea [J]. Microbiology, 2006, 152(9): 2625 − 2634. doi:  10.1099/mic.0.29044-0
[24]

GARRE E, MATALLANA E. The three trehalases Nth1p, Nth2p and Ath1p participate in the mobilization of intracellular trehalose required for recovery from saline stress in Saccharomyces cerevisiae [J]. Microbiology, 2009, 155(Pt 9): 3092 − 3099.
[25] 郎玉成, 倪珏萍. 新型杀菌剂——氰烯菌酯(JS399-19)[J]. 世界农药, 2007(5): 52 − 53. doi:  10.3969/j.issn.1009-6485.2007.05.011
[26] 李恒奎, 周明国, 王建新, 等. 氰烯菌酯防治小麦赤霉病及治理多菌灵抗药性研究[J]. 农药, 2006(2): 92 − 94. doi:  10.3969/j.issn.1006-0413.2006.02.005
[27] 王龙根, 倪珏萍, 王凤云, 等. 新杀菌剂JS399-19的生物活性研究[J]. 农药, 2004(8): 380 − 383. doi:  10.3969/j.issn.1006-0413.2004.08.016
[28] 迟梦宇, 王健力, 黄金光. 禾谷镰刀菌肌球蛋白(MyosinⅠ)生物信息学分析及原核表达与纯化[J]. 青岛农业大学学报:自然科学版, 2018, 35(2): 111 − 118.
[29]

ZHENG Z, HOU Y, CAI Y, et al. Whole-genome sequencing reveals that mutations in myosin-5 confer resistance to the fungicide phenamacril in Fusarium graminearum [J]. Scientific Reports, 2015, 5: 8248. doi:  10.1038/srep08248
[30] 王飞燕, 郭立佳, 杨腊英, 等. 尖孢镰刀菌古巴专化型4号生理小种fpd1基因敲除与表型分析[J]. 热带作物学报, 2015, 36(8): 1462 − 1468. doi:  10.3969/j.issn.1000-2561.2015.08.017
[31] 徐齐君, 胡小平, 陈婷, 等. PEG介导的棉花枯萎病菌原生质体转化体系的建立[J]. 棉花学报, 2012, 24(3): 222 − 228. doi:  10.3969/j.issn.1002-7807.2012.03.005
[32] 漆艳香, 谢艺贤, 张欣, 等. 香蕉枯萎菌基因组DNA提取方法的研究[J]. 生物技术, 2004(6): 32 − 34. doi:  10.3969/j.issn.1004-311X.2004.06.016
[33] 杨军, 薛芳, 王海凤, 等. 水稻稻瘟病菌单孢分离技术及常见问题分析[J]. 山东农业科学, 2017, 49(2): 132 − 135.
[34]

MOHAMED A A, MAK C, LIEW K W, et al. Early evaluation of banana plants at nursery stage for fusarium wilts tolerance[C]// Molina A B, Masdek N H, Liew K W. Banana fusarium wilt management: towards sustainable cultivation. Rome: INIBAP Press, 2001: 174 − 185.
[35]

FENG H Q, LI G H, SHUN-WEN D, et al. The septin protein Sep4 facilitates host infection by plant fungal pathogens via mediating initiation of infection structure formation [J]. Environmental Microbiology, 2016, 19(5): 1730 − 1749.
[36]

FOSTER A J. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea [J]. EMBO (European Molecular Biology Organization) Journal, 2003, 22(2): 225 − 235. doi:  10.1093/emboj/cdg018
[37]

PEDREÑ O Y, GIMENO-ALCAÑIZ J V, MATALLANA E, et al. Response to oxidative stress caused by H2O2 in Saccharomyces cerevisiae mutants deficient in trehalase genes [J]. Archives of Microbiology, 2002, 177(6): 494 − 499. doi:  10.1007/s00203-002-0418-2
[38] 吕烨, 肖冬光, 和东芹, 等. 酵母海藻糖酶缺失突株的构建及其耐性[J]. 微生物学报, 2008(10): 1301 − 1307. doi:  10.3321/j.issn:0001-6209.2008.10.005
[39]

PENDREÑO Y, GONZÁLEZ‐PÁRRAGA P, CONESA S,, et al. The cellular resistance against oxidative stress (H2O2) is independent of neutral trehalase (Ntc1p) activity in Candda albicans [J]. FEMS Yeast Research, 2006, 6(1): 57 − 62. doi:  10.1111/j.1567-1364.2005.00025.x
[40]

BOTTS M R, HUANG M, BORCHARDT R K, et al. Developmental cell fate and virulence are linked to trehalose homeostasis in Cryptococcus neoformans [J]. Eukaryotic Cell, 2014, 13(9): 1158 − 1168. doi:  10.1128/EC.00152-14