[1] O'BRIEN M J, BEIJERINK N J, WADE C M. Genetics of canine myxomatous mitral valve disease[J]. Anim Genet,2021, 52(4):409-421.
[2] DELLING F N, VASAN R S. Epidemiology and pathophysiology of mitral valve prolapse:new insights into disease progression, genetics, and molecular basis[J]. Circulation, 2014, 129(21):2158-2170.
[3] FOX P R. Pathology of myxomatous mitral valve disease in the dog[J]. J Vet Cardiol, 2012, 14(1):103-126.
[4] KEENE B W, ATKINS C E, BONAGURA J D, et al.ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs[J]. J Vet Intern Med, 2019, 33(3):1127-1140.
[5] 宋光远,刘然,卢志南,等.功能性二尖瓣反流的治疗策略[J].临床心血管病杂志, 2022, 38(6):433-438.
[6]

TANG Q, MCNAIR A J, PHADWAL K, et al. The Role of Transforming Growth Factor-beta Signaling in Myxomatous Mitral Valve Degeneration[J]. Front Cardiovasc Med,2022, 9:872288.
[7]

PIERA-VELAZQUEZ S, LI Z, JIMENEZ S A. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders[J]. The American journal of pathology, 2011, 179(3):1074-1080.
[8]

MARKBY G, SUMMERS K M, MACRAE V E, et al.Myxomatous Degeneration of the Canine Mitral Valve:From Gross Changes to Molecular Events[J]. J Comp Pathol, 2017, 156(4):371-383.
[9] 王希龙,欧江涛,黄礼光,等.海南五指山猪遗传多样性的微卫星分析[J].生物多样性, 2005, 13(1):20-26.
[10]

CAMACHO P, FAN H, LIU Z, et al. Large mammalian animal models of heart disease[J]. Journal of cardiovascular development and disease, 2016, 3(4):30.
[11]

ZHAO Y, XIANG L, LIU Y, et al. Atherosclerosis induced by a high-cholesterol and high-fat diet in the inbred strain of the Wuzhishan miniature pig[J]. Animal biotechnology, 2018, 29(2):110-118.
[12]

LIU M M, FLANAGAN T, LU C C, et al. Culture and characterisation of canine mitral valve interstitial and endothelial cells[J]. The Veterinary Journal, 2015, 204(1):32-39.
[13]

TAN K, MARKBY G, MUIRHEAD R, et al. Evaluation of canine 2D cell cultures as models of myxomatous mitral valve degeneration[J]. PLoS One, 2019, 14(8):e0221126.
[14]

WATABE T, TAKAHASHI K, PIETRAS K, et al. Roles of TGF-beta signals in tumor microenvironment via regulation of the formation and plasticity of vascular system[J].Semin Cancer Biol, 2023, 92:130-138.
[15]

LI Y, LUI K O, ZHOU B. Reassessing endothelial-tomesenchymal transition in cardiovascular diseases[J].Nat Rev Cardiol, 2018, 15(8):445-456.
[16]

BISCHOFF J. Endothelial-to-Mesenchymal Transition[J].Circ Res, 2019, 124(8):1163-1165.
[17]

TANG Q, MARKBY G R, MACNAIR A J, et al. TGFbeta-induced PI3K/AKT/mTOR pathway controls myofibroblast differentiation and secretory phenotype of valvular interstitial cells through the modulation of cellular senescence in a naturally occurring in vitro canine model of myxomatous mitral valve disease[J]. Cell Prolif, 2023,56(6):e13435.
[18]

HEANEY A M, BULMER B J, ROSS C R, et al. A technique for in vitro culture of canine valvular interstitial cells[J]. Journal of Veterinary Cardiology, 2009, 11(1):1-7.
[19]

SCHROEDER M E, GONZALEZ RODRIGUEZ A,SPECKL K F, et al. Collagen networks within 3D PEG hydrogels support valvular interstitial cell matrix mineralization[J]. Acta Biomater, 2021, 119:197-210.
[20]

WU S, LI Y, ZHANG C, et al. Tri-Layered and Gel-Like Nanofibrous Scaffolds with Anisotropic Features for Engineering Heart Valve Leaflets[J]. Adv Healthc Mater,2022, 11(10):e2200053.
[21]

BLEVINS T L, CARROLL J L, RAZA A M, et al. Phenotypic characterization of isolated valvular interstitial cell subpopulations[J]. The Journal of heart valve disease,2006, 15(6):815-822.
[22]

CONNELL P S, HAN R I, GRANDE-ALLEN K J. Differentiating the aging of the mitral valve from human and canine myxomatous degeneration[J]. J Vet Cardiol,2012, 14(1):31-45.
[23]

LIU A C, JOAG V R, GOTLIEB A I. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology[J]. Am J Pathol, 2007, 171(5):1407-1418.