[1] GAO J, YANG X, ZHAO W, et al. Evolution, diversification, and expression of KNOX proteins in plants[J]. Frontiers in Plant Science, 2015, 6: 882.
[2] SAKAMOTO T, NISHIMURA A, TAMAOKI M, et al. The conserved KNOX domain mediates specificity of tobacco KNOTTED1-type homeodomain proteins[J]. The Plant Cell, 1999, 11(8): 1419 − 1432. doi:  10.1105/tpc.11.8.1419
[3] WANG L, YANG X, GAO Y, et al. Genome-wide identification and characterization of TALE superfamily genes in soybean (Glycine max L.)[J]. International Journal of Molecular Sciences, 2021, 22(8): 4117. doi:  10.3390/ijms22084117
[4] ZHANG D, LAN S, YIN W L, et al. Genome-wide identification and expression pattern analysis of KNOX gene family in Orchidaceae[J]. Frontiers in Plant Science, 2022, 13: 901089. doi:  10.3389/fpls.2022.901089
[5] TSUDA K, ITO Y, SATO Y, et al. Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice[J]. The Plant Cell, 2011, 23(12): 4368 − 4381.
[6] WANG S, YAMAGUCHI M, GRIENENBERGER E, et al. The Class Ⅱ KNOX genes KNAT3 and KNAT7 work cooperatively to influence deposition of secondary cell walls that provide mechanical support to Arabidopsis stems[J]. Plant Journal, 2020, 101(2): 293 − 309. doi:  10.1111/tpj.14541
[7] MAGNANI E, HAKE S. KNOX lost the OX the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain[J]. The Plant Cell, 2008, 20(4): 875 − 887. doi:  10.1105/tpc.108.058495
[8] PENG J, YU J, WANG H, et al. Regulation of compound leaf development in Medicago truncatula by fused compound leaf1, a class M KNOX gene[J]. The Plant Cell, 2011, 23(11): 3929 − 3943. doi:  10.1105/tpc.111.089128
[9] JIA P, WANG Y, SHARIF R, et al. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: a review [J]. International Journal of Biological Macromolecules, 2023, 253(Pt 3): 126878.
[10] RAGNI L, BELLES-BOIX E, GüNL M, et al. Interaction of KNAT6 and KNAT2 with BREVIPEDICELLUS and PENNYWISE in Arabidopsis inflorescences[J]. The Plant Cell, 2008, 20(4): 888 − 900. doi:  10.1105/tpc.108.058230
[11] HAY A, TSIANTIS M. KNOX genes: versatile regulators of plant development and diversity[J]. Development, 2010, 137(19): 3153 − 3165.
[12] KIM D, CHO Y H, RYU H, et al. BLH1 and KNAT3 modulate ABA responses during germination and early seedling development in Arabidopsis[J]. Plant Journal, 2013, 75(5): 755 − 766. doi:  10.1111/tpj.12236
[13] LI E, BHARGAVA A, QIANG W, et al. The Class Ⅱ KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus[J]. New Phytologist, 2012, 194(1): 102 − 115.
[14] WANG S, YANG H, MEI J, et al. Rice homeobox protein KNAT7 integrates the pathways regulating cell expansion and wall stiffness[J]. Plant Physiology, 2019, 181(2): 669 − 682.
[15] 赵军, 徐芳, 吉腾飞, 等. 睡莲属植物化学成分及生物活性研究进展[J]. 天然产物研究与开发, 2014, 26(1): 142 − 147.
[16] 余翠薇, 陈煜初, 余东北, 等. 不同类型睡莲的特点及栽培技术[J]. 浙江农业科学, 2016, 57(10): 1694 − 1695.
[17]

CHEN F, DONG W, ZHANG J, et al. The sequenced angiosperm genomes and genome databases[J]. Frontiers in Plant Science, 2018, 9: 418. doi:  10.3389/fpls.2018.00418
[18]

CHEN C, WU Y, LI J, et al. TBtools-Ⅱ: a “one for all, all for one” bioinformatics platform for biological big-data mining[J]. Molecular Plant, 2023, 16(11): 1733 − 1742. doi:  10.1016/j.molp.2023.09.010
[19] 李清雪, 黎洁, 许慧娴, 等. 热带睡莲叶片胎生苗的生长机理[J/OL]. 热带亚热带植物学报, 1−11(2024-04-30)[2025-03-16]. http://kns.cnki.net/kcms/detail/44.1374.q.20240429.1843.002.html.
[20] 赵长江, 宋巨奇, 都梦翔, 等. 玉米KNOX基因家族鉴定及组织和逆境表达分析[J]. 西北植物学报, 2021, 41(7): 1109 − 1119. doi:  10.7606/j.issn.1000-4025.2021.07.1109
[21] 宋宁宁, 梁慧慧, 安义伟, 等. 小麦KNOX基因家族鉴定与生物信息学分析[J]. 分子植物育种, 2022, 20(7): 2105 − 2117.
[22] 施卫萍, 张欣, 赵媛, 等. 谷子KNOX基因家族鉴定及组织表达模式分析[J]. 农业生物技术学报, 2024, 32(8): 1742 − 1752. doi:  10.3969/j.issn.1674-7968.2024.08.003
[23]

HAKE S, SMITH H M S, HOLTAN H, et al. The role of Knox genes in plant development[J]. Annual Review of Cell and Developmental Biology, 2004, 20: 125 − 151. doi:  10.1146/annurev.cellbio.20.031803.093824
[24]

ICHIHASHI Y, AGUILAR-MARTíNEZ J A, FARHI M, et al. Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 2616 − 2621.
[25]

LINCOLN C, LONG J, YAMAGUCHI J, et al. A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants[J]. The Plant Cell, 1994, 6(12): 1859 − 1876.
[26]

KEREN-KEISERMAN A, SHTERN A, LEVY M, et al. CLASS-Ⅱ KNOX genes coordinate spatial and temporal ripening in tomato[J]. Plant Physiology, 2022, 190(1): 657 − 668. doi:  10.1093/plphys/kiac290
[27]

MUKHERJEE K, BROCCHIERI L, BüRGLIN T R. A comprehensive classification and evolutionary analysis of plant homeobox genes[J]. Molecular Biology and Evolution, 2009, 26(12): 2775 − 2794. doi:  10.1093/molbev/msp201
[28]

AGUILAR-MARTÍNEZ J A, UCHIDA N, TOWNSLEY B, et al. Transcriptional, posttranscriptional, and posttranslational regulation of SHOOT MERISTEMLESS gene expression in Arabidopsis determines gene function in the shoot apex[J]. Plant Physiology, 2015, 167(2): 424 − 442. doi:  10.1104/pp.114.248625
[29]

JANSSEN B J, WILLIAMS A, CHEN J J, et al. Isolation and characterization of two knotted-like homeobox genes from tomato[J]. Plant Molecular Biology, 1998, 36(3): 417 − 425. doi:  10.1023/A:1005925508579
[30]

CHEN J J, WANG W, QIN W Q, et al. Transcription factors KNAT3 and KNAT4 are essential for integument and ovule formation in Arabidopsis[J]. Plant Physiology, 2023, 191(1): 463 − 478. doi:  10.1093/plphys/kiac513
[31] 顾伟卓, 汪仲毅, 杨洁, 等. 金鱼草KNOX基因家族鉴定及调控其雄蕊瓣化的候选基因挖掘[J]. 西南农业学报, 2024, 37(6): 1329 − 1339.
[32] 贾鹏. MdKNOX转录因子通过GA/ABA途径调控苹果生长发育研究 [D]. 杨凌: 西北农林科技大学, 2021.
[33]

SCOFIELD S, DEWITTE W, NIEUWLAND J, et al. The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity[J]. The Plant Journal, 2013, 75(1): 53 − 66. doi:  10.1111/tpj.12198
[34]

ZHU Y, WU N, SONG W, et al. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies[J]. BMC Plant Biology, 2014, 14: 93. doi:  10.1186/1471-2229-14-93
[35]

ZHANG L, CHEN F, ZHANG X, et al. The water lily genome and the early evolution of flowering plants[J]. Nature, 2020, 577(7788): 79 − 84. doi:  10.1038/s41586-019-1852-5
[36]

TAN S, MA H, WANG J, et al. DNA transposons mediate duplications via transposition-independent and-dependent mechanisms in metazoans[J]. Nature Communications, 2021, 12: 4280. doi:  10.1038/s41467-021-24585-9