[1] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and Vulnerability[M]. Cambridge: Cambridge University Press, 2023.
[2] 胡俊靖, 陈卫军, 郭子武, 等. 水分胁迫对竹子生理特性影响的研究进展[J]. 西南林业大学学报, 2015, 35(1): 91 − 95.
[3] 张颖娴, 孙劭, 刘远, 等. 2021年全球重大天气气候事件及其成因[J]. 气象, 2022, 48(4): 459 − 469. doi:  10.7519/j.issn.1000-0526.2022.032201
[4]

HARRISON-KIRK T, BEARE M H, MEENKEN E D, et al. Soil organic matter and texture affect responses to dry/wet cycles: changes in soil organic matter fractions and relationships with C and N mineralisation[J]. Soil Biology and Biochemistry, 2014, 74: 50 − 60. doi:  10.1016/j.soilbio.2014.02.021
[5] 夏银华, 章新平, 戴军杰, 等. 亚热带季风区樟树蒸腾与气象因子之间的时滞效应[J]. 水土保持学报, 2021, 35(5): 194 − 203.
[6] 王卓敏, 郑欣颖, 薛立. 樟树幼苗对干旱胁迫和种植密度的生理响应[J]. 生态学杂志, 2017, 36(6): 1495 − 1502.
[7] 胡义, 胡庭兴, 胡红玲, 等. 干旱胁迫对香樟幼树生长及光合特性的影响[J]. 应用与环境生物学报, 2014, 20(4): 675 − 682.
[8]

WANG C, SUN Y, CHEN H Y H, et al. Meta-analysis shows non-uniform responses of above-and belowground productivity to drought[J]. The Science of the Total Environment, 2021, 782: 146901. doi:  10.1016/j.scitotenv.2021.146901
[9]

ZHAO Y, WANG D, DUAN H. Effects of drought and flooding on growth and physiology of Cinnamomum camphora seedlings[J]. Forests, 2023, 14(7): 1343. doi:  10.3390/f14071343
[10] 李梦寻, 王冬梅, 任远, 等. 不同干湿交替频率对土壤速效养分、水溶性有机碳的影响[J]. 生态学报, 2018, 38(5): 1542 − 1549.
[11] 张素, 熊东红, 校亮, 等. 干湿交替对土壤性质影响的研究[J]. 土壤通报, 2017, 48(3): 762 − 768.
[12] 夏银华, 章新平, 戴军杰, 等. 亚热带季风区樟树的水分利用特征[J]. 水土保持学报, 2022, 36(6): 195 − 205.
[13] 刘方春, 邢尚军, 马海林, 等. 持续干旱对樱桃根际土壤细菌数量及结构多样性影响[J]. 生态学报, 2014, 34(3): 642 − 649.
[14]

KOHLER J, KNAPP B A, WALDHUBER S, et al. Effects of elevated CO2, water stress, and inoculation with Glomus intraradices or Pseudomonas mendocina on lettuce dry matter and rhizosphere microbial and functional diversity under growth chamber conditions[J]. Journal of Soils and Sediments, 2010, 10(8): 1585 − 1597. doi:  10.1007/s11368-010-0259-6
[15]

KAISERMANN A, DE VRIES F T, GRIFFITHS R I, et al. Legacy effects of drought on plant-soil feedbacks and plant-plant interactions[J]. New Phytologist, 2017, 215(4): 1413 − 1424. doi:  10.1111/nph.14661
[16]

HE M, DIJKSTRA F A. Drought effect on plant nitrogen and phosphorus: a meta-analysis[J]. New Phytologist, 2014, 204(4): 924 − 931. doi:  10.1111/nph.12952
[17] 庞志强, 余迪求. 干旱胁迫下的植物根系–微生物互作体系及其应用[J]. 植物生理学报, 2020, 56(2): 109 − 126.
[18]

JIA Y, VAN DER HEIJDEN M G A, WAGG C, et al. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition[J]. Journal of Ecology, 2021, 109(9): 3171 − 3181. doi:  10.1111/1365-2745.13521
[19]

PREECE C, VERBRUGGEN E, LIU L, et al. Effects of past and current drought on the composition and diversity of soil microbial communities[J]. Soil Biology and Biochemistry, 2019, 131: 28 − 39. doi:  10.1016/j.soilbio.2018.12.022
[20]

FIERER N, SCHIMEL J P. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations[J]. Soil Biology and Biochemistry, 2002, 34(6): 777 − 787. doi:  10.1016/S0038-0717(02)00007-X
[21]

STEENWERTH K L, JACKSON L E, CALDERóN F J, et al. Response of microbial community composition and activity in agricultural and grassland soils after a simulated rainfall[J]. Soil Biology and Biochemistry, 2005, 37(12): 2249 − 2262. doi:  10.1016/j.soilbio.2005.02.038
[22] 谢志煌, 高志颖, 郭丽丽, 等. 土壤微生物活性和生物量对干湿交替的响应[J]. 土壤与作物, 2020, 9(4): 348 − 354. doi:  10.11689/j.issn.2095-2961.2020.04.003
[23]

AUSTIN A T, YAHDJIAN L, STARK J M, et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J]. Oecologia, 2004, 141(2): 221 − 235. doi:  10.1007/s00442-004-1519-1
[24] 孙嘉鸿, 郭彤, 董彦民, 等. 冻融循环对金川泥炭沼泽土壤微生物量及群落结构的影响[J]. 生态学报, 2022, 42(7): 2763 − 2773.
[25]

BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911 − 917. doi:  10.1139/o59-099
[26]

WU J, LIU W, FAN H, et al. Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest[J]. Ecology and Evolution, 2013, 3(11): 3895 − 3905. doi:  10.1002/ece3.750
[27] 陈振翔, 于鑫, 夏明芳, 等. 磷脂脂肪酸分析方法在微生物生态学中的应用[J]. 生态学杂志, 2005, 24(7): 828 − 832. doi:  10.3321/j.issn:1000-4890.2005.07.022
[28] 张秋芳, 刘波, 林营志, 等. 土壤微生物群落磷脂脂肪酸PLFA生物标记多样性[J]. 生态学报, 2009, 29(8): 4127 − 4137. doi:  10.3321/j.issn:1000-0933.2009.08.014
[29] 马书琴, 王小丹, 王荷, 等. 藏北高寒草地土壤磷脂脂肪酸指纹特征及其与土壤化学性质的关系[J]. 生态环境学报, 2017, 26(9): 1480 − 1487.
[30] 曹志平, 李德鹏, 韩雪梅. 土壤食物网中的真菌/细菌比率及测定方法[J]. 生态学报, 2011, 31(16): 4741 − 4748.
[31]

CAMENZIND T, PHILIPP GRENZ K, LEHMANN J, et al. Soil fungal mycelia have unexpectedly flexible stoichiometric C: N and C: P ratios[J]. Ecology Letters, 2021, 24(2): 208 − 218. doi:  10.1111/ele.13632
[32] 庞丹波, 吴梦瑶, 赵娅茹, 等. 贺兰山东坡不同海拔土壤微生物群落特征及其影响因素[J]. 应用生态学报, 2023, 34(7): 1957 − 1967.
[33] 马鑫茹, 郑旭理, 郑春颖, 等. 毛竹扩张对常绿阔叶林土壤微生物群落的影响[J]. 应用生态学报, 2022, 33(4): 1091 − 1098.
[34] 蒋文伟, 周国模, 余树全, 等. 安吉山地主要森林类型土壤养分状况的研究[J]. 水土保持学报, 2004, 18(4): 73 − 76+100. doi:  10.3321/j.issn:1009-2242.2004.04.019
[35] 马朋, 李昌晓, 任庆水, 等. 模拟水淹–干旱胁迫对水杉幼树实生土壤营养元素含量的影响[J]. 生态学报, 2015, 35(23): 7763 − 7773.
[36] 文旻, 胡启武, 阳文静, 等. 氮、磷添加对鄱阳湖典型苔草湿地土壤养分和植物生物量的影响[J]. 生态学杂志, 2021, 40(6): 1669 − 1676.
[37]

ZANG U, GOISSER M, GRAMS T E E, et al. Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery[J]. Tree Physiology, 2014, 34(1): 29 − 38. doi:  10.1093/treephys/tpt110
[38] 杨予静, 李昌晓, 张晔, 等. 水淹–干旱交替胁迫对湿地松幼苗盆栽土壤营养元素含量的影响[J]. 林业科学, 2013, 49(2): 55 − 65.
[39]

YIN S, BAI J, WANG W, et al. Effects of soil moisture on carbon mineralization in floodplain wetlands with different flooding frequencies[J]. Journal of Hydrology, 2019, 574: 1074 − 1084. doi:  10.1016/j.jhydrol.2019.05.007
[40] 朱义族, 李雅颖, 韩继刚, 等. 水分条件变化对土壤微生物的影响及其响应机制研究进展[J]. 应用生态学报, 2019, 30(12): 4323 − 4332.
[41]

BARNARD R L, OSBORNE C A, FIRESTONE M K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The ISME Journal, 2013, 7(11): 2229 − 2241. doi:  10.1038/ismej.2013.104
[42]

DE VRIES F T, GRIFFITHS R I, BAILEY M, et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 2018, 9(1): 3033. doi:  10.1038/s41467-018-05516-7
[43]

EVANS S E, WALLENSTEIN M D. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter?[J]. Biogeochemistry, 2012, 109(1): 101 − 116.
[44]

YANG C M, YANG L Z, YAN T M. Chemical and microbiological parameters of paddy soil quality as affected by different nutrient and water regimes[J]. Pedosphere, 2005, 15: 369 − 378.
[45]

DE VRIES F T, LIIRI M E, BJøRNLUND L, et al. Land use alters the resistance and resilience of soil food webs to drought[J]. Nature Climate Change, 2012, 2: 276 − 280. doi:  10.1038/nclimate1368
[46] 左易灵, 贺学礼, 王少杰, 等. 磷脂脂肪酸(PLFA)法检测蒙古沙冬青根围土壤微生物群落结构[J]. 环境科学, 2016, 37(7): 2705 − 2713.
[47] 牛佳, 周小奇, 蒋娜, 等. 若尔盖高寒湿地干湿土壤条件下微生物群落结构特征[J]. 生态学报, 2011, 31(2): 474 − 482.
[48]

GUCKERT J B, ANTWORTH C P, NICHOLS P D, et al. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments[J]. FEMS Microbiology Ecology, 1985, 1(3): 147 − 158.
[49] 张斌, 李利, 张美俊, 等. 干旱对燕麦早期根际土壤微生物群落功能多样性的影响[J]. 山西农业大学学报(自然科学版), 2022, 42(5): 9 − 16.
[50] 张乃莉, 郭继勋, 王晓宇, 等. 土壤微生物对气候变暖和大气N沉降的响应[J]. 植物生态学报, 2007, 31(2): 252 − 261. doi:  10.3321/j.issn:1005-264X.2007.02.008
[51] 滕怡敏, 李丛笑, 张天昱, 等. 不同水淹梯度下河漫滩湿地土壤有机碳特征及其影响因子[J]. 环境科学学报, 2023, 43(8): 362 − 371.
[52]

GENG Y, WANG D, YANG W. Effects of different inundation periods on soil enzyme activity in riparian zones in Lijiang[J]. CATENA, 2017, 149: 19 − 27. doi:  10.1016/j.catena.2016.08.004
[53] 张梦瑶, 高永恒, 谢青琰. 干湿交替对土壤有机碳矿化影响的研究进展[J]. 世界科技研究与发展, 2017, 39(1): 17 − 23.
[54]

XU X, LUO X. Effect of wetting intensity on soil GHG fluxes and microbial biomass under a temperate forest floor during dry season[J]. Geoderma, 2012, 170: 118 − 126. doi:  10.1016/j.geoderma.2011.11.016