[1] WARING R H, RUNNING S W. Forest Ecosystems: Analysis at Multiple Scales [M]. San Diego: Academic Press, 1998: 1 − 10.
[2] MING X, TERRY A D, YE Q. A simple technique to measure stem respiration using a horizontally oriented soil chamber[J]. Canadian Journal of Forest Research, 2000, 30(10): 1555 −1560.
[3] RYAN M G. Effects of climate change on plant respiration [J]. Ecological Applications, 1991, 1(2): 157 − 167. doi:  10.2307/1941808
[4] VOSE J, RYAN M. Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis [J]. Global Change Biology, 2002, 18(2): 182 − 193.
[5] 马玉娥, 项文化, 雷丕锋. 林木树干呼吸变化及其影响因素研究进展[J]. 植物生态学报, 2007, 31(3): 403 − 412. doi:  10.3321/j.issn:1005-264X.2007.03.009
[6]

WIESER G, GRUBER A, BAHN M, et al. Respiratory fluxes in a Canary Islands pine forest [J]. Tree Physiology, 2009, 29(3): 457 − 466. doi:  10.1093/treephys/tpp008
[7]

TESKEY R O, MCGUIRE M A. Measurement of stem respiration of sycamore (Platanus occidental is L.) trees involves internal and external fluxes of CO2 and possible transport of CO2 from roots [J]. Plant, Cell and Environment, 2007, 30(15): 570 − 579.
[8]

DAMESIN C, CESCHIA E, LE G N, et al. Stem and branch respiration of beech: from tree measurements to estimations at the stand level [J]. New Phytologist, 2002, 153(1): 159 − 172. doi:  10.1046/j.0028-646X.2001.00296.x
[9]

MASATAKE G A, HAJIME UTSUGI, TAKUYA K, et al. Estimation of whole-stem respiration, incorporating vertical and seasonal variations in stem CO2 efflux rate, of Chamaecyparis obtusa trees [J]. Journal of Forest Research., 2010, 15(2): 115 − 122. doi:  10.1007/s10310-009-0163-3
[10]

TARVAINEN L, RANTFORS M, WALLIN G. Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand [J]. Tree Physiology, 2014, 34(5): 488 − 502. doi:  10.1093/treephys/tpu036
[11] 赵广, 刘刚才, 朱万泽. 贡嘎山峨眉冷杉树干呼吸空间特征及其对温度的响应[J]. 生态学报, 2018, 38(8): 2732 − 2742.
[12] 石新立, 王传宽, 许飞, 等. 四个温带树种树干呼吸的时间动态及其影响因子[J]. 生态学报, 2010, 30(15): 3994 − 4003.
[13] 许飞, 王传宽, 王兴昌. 东北东部14个温带树种树干呼吸的种内种间变异[J]. 生态学报, 2011, 31(13): 3581 − 3589.
[14] 黄玮, 朱锦懋, 阮宏华, 等. 树干CO2释放速率影响因素研究进展[J]. 生态学杂志, 2015, 29(4): 790 − 797.
[15]

AMTHOR J S. The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later [J]. Annals of Botany, 2000, 86(1): 1 − 20. doi:  10.1006/anbo.2000.1175
[16]

ATKIN O K, TJOELKER M G. Thermal acclimation and the dynamic response of plant respiration to temperature [J]. Trends in Plant Science, 2003, 8(7): 343 − 351. doi:  10.1016/S1360-1385(03)00136-5
[17] 陈莉, 黄先寒, 兰国玉, 等. 中国橡胶林下植物物种组成与多样性分析[J]. 西北林学院学报, 2019, 34(2): 76 − 83.
[18]

GRANIRR A. Mesure du flux de sève brute dans le tronc du Douglas par une nouvelle méthode thermique [J]. Ann. Sci. For., 1987, 44(1): 1 − 14.
[19]

GRANIRR A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres [J]. Ann. Sci. for., 1985, 42(2): 81 − 88.
[20] 蔡海滨, 涂敏, 胡彦师, 等. 一种优化的橡胶树木质部石蜡切片制作方法[J]. 热带农业科学, 2015, 35(6): 25 − 28. doi:  10.3969/j.issn.1009-2196.2015.06.005
[21] 易建学, 谢贵水, 王纪坤, 等. 不同品系与不同径围橡胶树树干呼吸的研究[J]. 安徽农业科学, 2012, 40(27): 13433 − 13436. doi:  10.3969/j.issn.0517-6611.2012.27.079
[22] 韩风森, 胡聃, 王晓琳, 等. 北京2种阔叶树不同高度枝干的呼吸速率及其对温度的敏感性[J]. 植物生态学报, 2015, 39(2): 197 − 205. doi:  10.17521/cjpe.2015.0019
[23] 朱丽薇, 赵平, 倪广艳, 等. 荷木树干CO2释放通量的个体间差异及树干液流的效应[J]. 应用与环境生物学报, 2011, 17(4): 447 − 452.
[24] 张海燕, 王传宽, 王兴昌, 等. 白桦和紫椴树干非结构性碳水化合物的空间变异[J]. 应用生态学报, 2013, 24(11): 3050 − 3056.
[25] 郑云普, 王贺新, 娄鑫, 等. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报, 2013, 25(4): 1188 − 1196.
[26]

ZIMMRNNANN M. Xylem Structure and the Ascent of Sap[M]. Berlin: Springer, 1983.
[27]

GEA-IZQU I G, FONTI P, CHERUBINI P, et al. Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability [J]. Tree Physiology, 2012, 32(4): 401 − 413. doi:  10.1093/treephys/tps026
[28] 赵玮, 张一平, 宋清海, 等. 橡胶树蒸腾特征及其与环境因子的关系[J]. 生态学杂志, 2014, 33(7): 1803 − 1810.
[29] 王秀伟, 毛子军. 输导组织结构对液流速度和树干CO2释放通量的影响[J]. 北京林业大学学报, 2013, 35(4): 9 − 15.