[1] HEENGGE R. Principles of c-di-GMP signalling in bacteria [J]. Nature Reviews Microbiology, 2009, 7(4): 263 − 273. doi:  10.1038/nrmicro2109
[2] ROSS P, WEINHOUSE H, ALONI Y, et al. Regulation of cellulose synthesis in Acetobacter xylinumby cyclic diguanylic acid [J]. Nature, 1987, 325(6101): 279 − 281. doi:  10.1038/325279a0
[3] HENGGE R. Novel tricks played by the second messenger c-di-GMP in bacterial biofilm formation [J]. The EMBO Journal, 2013, 32(3): 322 − 323. doi:  10.1038/emboj.2012.351
[4] JENAL U, REINDERS A, LORI C. Cyclic di-GMP: second messenger extraordinaire [J]. Nature Reviews Microbiology, 2017, 15(5): 271 − 284. doi:  10.1038/nrmicro.2016.190
[5] OCHSNER U A, WILDERMAN P J, VASIL A I, et al. GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes [J]. Molecular Microbiology, 2002, 45(5): 1277 − 1287. doi:  10.1046/j.1365-2958.2002.03084.x
[6] KARAOLIS D. K, RASHID M H, CHYTHANYA R., et al. c-di-GMP (3'-5'-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation [J]. Antimicrob Agents Chemother, 2005, 49(3): 1029 − 1038. doi:  10.1128/AAC.49.3.1029-1038.2005
[7] ALDRIDGE P, JENAL U. Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator [J]. Molecular Microbiology, 1999, 32(2): 379 − 391. doi:  10.1046/j.1365-2958.1999.01358.x
[8] HECHT G B, NEWTON A. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus [J]. Journal of Bacteriology, 1995, 177(21): 6223 − 6229. doi:  10.1128/jb.177.21.6223-6229.1995
[9] SOMMER J M, NEWTON A. Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus [J]. Journal of Bacteriology, 1989, 171(1): 392 − 401. doi:  10.1128/jb.171.1.392-401.1989
[10] DE SOUZA A A, IONESCU M, BACCARI C, et al. Phenotype overlap in Xylellafastidiosa Is controlled by the cyclic di-GMP Phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling [J]. Applied and Environmental Microbiology, 2013, 79(11): 3444 − 3454. doi:  10.1128/AEM.03834-12
[11] NINO-LIU D O, RONALD P C, BOGDANOVE A J. Xanthomonas oryzaepathovars: model pathogens of a model crop [J]. Molecular Plant Pathology, 2006, 7(5): 303 − 324. doi:  10.1111/j.1364-3703.2006.00344.x
[12] YANG F, QIAN S, TIAN F, et al. The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production and virulence in Xanthomonas oryzaepv. oryzae [J]. Journal of Applied Microbiology, 2016, 120(6): 1646 − 1657. doi:  10.1111/jam.13115
[13] XUE D, TIAN F, YANG F, et al. Phosphodiesterase EdpX1 Promotes Xanthomonas oryzaepv. oryzaevirulence, exopolysaccharide production, and biofilm formation [J]. Applied and Environmental Microbiology, 2018, 84(22): e01717 − 18.
[14] YANG F, TIAN F, SUN L, et al. A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzaepv. oryzae [J]. Molecular Plant-Microbe Interactions, 2012, 25(10): 1361 − 1369. doi:  10.1094/MPMI-01-12-0014-R
[15] LL Y R, ZOU H S, CHE Y Z, et al. A novel regulatory role of hrpD6 in regulating hrp-hrc-hpagenes in Xanthomonas oryzaepv. oryzicola [J]. Molecular Plant-Microbe Interactions, 2011, 24(9): 1086 − 1101. doi:  10.1094/MPMI-09-10-0205
[16] SCHAFER A, TAUCH A, JAGER W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum [J]. Gene, 1994, 145(1): 69 − 73. doi:  10.1016/0378-1119(94)90324-7
[17] ZHU PL. , ZHAO S, TANG J L, et al. ThersmA-like gene rsmAXooof Xanthomonasoryzaepv. oryzaeregulates bacterial virulence and production of diffusible signal factor [J]. Molecular Plant Pathology, 2011, 12(3): 227 − 237. doi:  10.1111/j.1364-3703.2010.00661.x
[18] DILUZIO W R, TURNER L, MAYER M, et al. Escherichia coli swim on the right-hand side [J]. Nature, 2005, 435(7046): 1271 − 1274. doi:  10.1038/nature03660
[19] YU C, CHEN H, TIAN F, et al. A ten gene-containing genomic island determines flagellin glycosylation: implication for its regulatory role in motility and virulence of Xanthomonas oryzae pv. oryzae [J]. Molecular Plant Pathology, 2018, 19(3): 579 − 592. doi:  10.1111/mpp.12543
[20] TANG J L, LIU Y N, BARBER C E, et al. Genetic and molecular analysis of a cluster of rpfgenes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris [J]. MGG Molecular & General Genetics, 1991, 226(3): 409 − 417.
[21] TIAN F, YU C, LI H, et al. Alternative sigma factor RpoN2 is required for flagellar motility and full virulence of Xanthomonas oryzaepv. oryzae [J]. Microbiological Research, 2015, 170: 177 − 183. doi:  10.1016/j.micres.2014.07.002
[22] BÜTNER D, BONAS U. Regulation and secretion of Xanthomonas virulence factors [J]. FEMS Microbiology Reviews, 2010, 34(2): 107 − 133. doi:  10.1111/j.1574-6976.2009.00192.x
[23] JHA G , RAJESHWARI R , SONTI R V. Bacterial type two secretion system secreted proteins: Double-edged swords for plant pathogens[J]. Molecular Plant-Microbe Interactions, 2005, 18 (9): 891-898.
[24] LI H, XUE D, TIAN F, et al. Xanthomonas oryzaepv. oryzae response regulator triP regulates virulence and exopolysaccharide production via interacting with c-di-GMP phosphodiesterase pdeR [J]. Molecular Plant-Microbe Interactions, 2019, 32(6): 729 − 739. doi:  10.1094/MPMI-09-18-0260-R