| [1] | Reddy M P K, Talekar N, Kumar A, et al. A review on understanding the effects and mechanisms of salinity tolerance in rice (Oryza sativa L. ) [J]. International Journal of Plant & Soil Science, 2023, 35(17): 209−219. https://doi.org/10.9734/IJPSS/2023/v35i173201 doi: 10.9734/IJPSS/2023/v35i173201 |
| [2] | 杨文涛, 王琦, 郭二丹, 等. 土壤盐渍化对植物影响的研究进展[J]. 农业与技术, 2024, 44(18): 95−99. https://doi.org/10.19754/j.nyyjs.20240930022 doi: 10.19754/j.nyyjs.20240930022 |
| [3] | 申晴, 韦海燕, 卞华, 等. 海雀稗种质资源的耐盐性评价[J]. 热带生物学报, 2020, 11(1): 11−19. https://doi.org/10.15886/j.cnki.rdswxb.2020.01.003 doi: 10.15886/j.cnki.rdswxb.2020.01.003 |
| [4] | 洪佳琦. 海雀稗种质资源遗传多样性研究[D]. 乌鲁木齐: 新疆农业大学, 2019. https://doi.org/10.27431/d.cnki.gxnyu.2019.000360 |
| [5] | Trenholm L E, Carrow R N, Duncan R R. Mechanisms of wear tolerance in seashore paspalum and bermudagrass [J]. Crop Science, 2000, 40(5): 1350−1357. https://doi.org/10.2135/cropsci2000.4051350x doi: 10.2135/cropsci2000.4051350x |
| [6] | Spiekerman J J, Devos K M. The halophyte seashore paspalum uses adaxial leaf papillae for sodium sequestration [J]. Plant Physiology, 2020, 184(4): 2107−2119. https://doi.org/10.1104/pp.20.00796 doi: 10.1104/pp.20.00796 |
| [7] | Lv Y P, Gu L H, Man R Z, et al. Response of stomatal conductance, transpiration, and photosynthesis to light and CO2 for Rice leaves with different appearance days [J]. Frontiers in Plant Science, 2024, 15: 1397948. https://doi.org/10.3389/fpls.2024.1397948 doi: 10.3389/fpls.2024.1397948 |
| [8] | Chaves M, Davies B. Drought effects and water use efficiency: improving crop production in dry environments [J]. Functional Plant Biology, 2010, 37(2): iii−vi. https://doi.org/10.1071/FPv37n2_FO doi: 10.1071/FPv37n2_FO |
| [9] | 马秋雨, 袁芳. 植物盐腺泌盐及发育研究进展[J]. 生物技术通报, 2023, 39(11): 74−85. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2023-0581 doi: 10.13560/j.cnki.biotech.bull.1985.2023-0581 |
| [10] | 孙劝劝, 祝青, 胡旭, 等. 盐生植物海雀稗的气孔特征与光合特性[J]. 热带生物学报, 2025, 16(4): 528−536. https://doi.org/10.15886/j.cnki.rdswxb.20240085 doi: 10.15886/j.cnki.rdswxb.20240085 |
| [11] | Wu Y H, Cheng J Q, Feng H Y, et al. Advances of research on desiccation-tolerant moss [J]. Journal of Desert Research, 2004, 24(1): 23−29. (查阅网上资料,本条文献为中文文献,请确认) https://doi.org/10.3321/j.issn:1000-694X.2004.01.004 |
| [12] | Aist J R, Israel H W. Autofluorescent and ultraviolet-absorbing components in cell walls and papillae of barley coleoptiles and their relationship to disease resistance [J]. Canadian Journal of Botany, 1986, 64(2): 266−272. https://doi.org/10.1139/b86-039 doi: 10.1139/b86-039 |
| [13] | 毛学文. 植物的毛状体[J]. 生物学教学, 2002, 27(11): 38−39. https://doi.org/10.3969/j.issn.1004-7549.2002.11.030 doi: 10.3969/j.issn.1004-7549.2002.11.030 |
| [14] | Arteaga N, Savic M, Méndez-Vigo B, et al. MYB transcription factors drive evolutionary innovations in Arabidopsis fruit trichome patterning [J]. The Plant Cell, 2021, 33(3): 548−565. https://doi.org/10.1093/plcell/koaa041 doi: 10.1093/plcell/koaa041 |
| [15] | Zhu L, Zeng F L, Liang Y P, et al. Small papillae regulated by SPD25 are critical for balancing photosynthetic CO2 assimilation and water loss in rice [J]. Rice, 2023, 16(1): 58. https://doi.org/10.1186/s12284-023-00676-7 doi: 10.1186/s12284-023-00676-7 |
| [16] | 刘双平, 俞熹. 荷叶效应的研究[J]. 大学物理, 2011, 30(9): 50−54. https://doi.org/10.3969/j.issn.1000-0712.2011.09.015 doi: 10.3969/j.issn.1000-0712.2011.09.015 |
| [17] | 王力, 胡琴, 舒立春, 等. 荷叶超疏水表面防覆冰试验及机理研究[J]. 电工技术学报, 2025, 40(3): 855−863. https://doi.org/10.19595/j.cnki.1000-6753.tces.232155 doi: 10.19595/j.cnki.1000-6753.tces.232155 |
| [18] | Câmara P E A S, Kellogg E A. Morphology and development of leaf papillae in Sematophyllaceae [J]. The Bryologist, 2010, 113(1): 22−33. https://doi.org/10.1639/0007-2745-113.1.22 doi: 10.1639/0007-2745-113.1.22 |
| [19] | Ghannoum O. C4 photosynthesis and water stress [J]. Annals of Botany, 2009, 103(4): 635−644. https://doi.org/10.1093/aob/mcn093 doi: 10.1093/aob/mcn093 |
| [20] | Yoo J H, Park J H, Cho S H, et al. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces [J]. Plant Molecular Biology, 2011, 77(6): 631−641. https://doi.org/10.1007/s11103-011-9839-0 doi: 10.1007/s11103-011-9839-0 |
| [21] | 朱琳. 水稻叶表皮小乳突发育基因SPD25和粒型基因SRG3的克隆和功能分析[D]. 沈阳: 沈阳农业大学, 2024. https://doi.org/10.27327/d.cnki.gshnu.2024.000017 |
| [22] | 郭昱. 谷子核心种质叶片气孔、乳突密度全基因组关联分析[D]. 太原: 山西农业大学, 2020. https://doi.org/10.27285/d.cnki.gsxnu.2020.000577 |
| [23] | Jacobs A K, Lipka V, Burton R A, et al. An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation [J]. The Plant Cell, 2003, 15(11): 2503−2513. https://doi.org/10.1105/tpc.016097 doi: 10.1105/tpc.016097 |
| [24] | 葛星辰. 谷子叶片乳突发育特征及关键调控基因SiICS的功能研究[D]. 太原: 山西农业大学, 2023. doi: 10.27285/d.cnki.gsxnu.2023.000342 |
| [25] | Munns R. Genes and salt tolerance: bringing them together [J]. New Phytologist, 2005, 167(3): 645−663. https://doi.org/10.1111/j.1469-8137.2005.01487.x doi: 10.1111/j.1469-8137.2005.01487.x |
| [26] | Meng X Q, Zhou J, Sui N. Mechanisms of salt tolerance in halophytes: current understanding and recent advances [J]. Open Life Sciences, 2018, 13(1): 149−154. https://doi.org/10.1515/biol-2018-0020 doi: 10.1515/biol-2018-0020 |
| [27] | Guo H L, Wang Y, Li D D, et al. Growth response and ion regulation of seashore paspalum accessions to increasing salinity [J]. Environmental and Experimental Botany, 2016, 131: 137−145. https://doi.org/10.1016/j.envexpbot.2016.07.003 doi: 10.1016/j.envexpbot.2016.07.003 |
| [28] | 吴欣欣, 白天惠, 张乐, 等. 泌盐盐生植物的泌盐机理研究进展[J]. 植物生理学报, 2020, 56(12): 2526−2532. https://doi.org/10.13592/j.cnki.ppj.2020.0370 doi: 10.13592/j.cnki.ppj.2020.0370 |
| [29] | Duarte-Silva A G, Carvalho-Silva M, Câmara P E A S. Morphology and development of leaf papillae in the Pilotrichaceae [J]. Acta Botanica Brasilica, 2013, 27(4): 737−742. https://doi.org/10.1590/S0102-33062013000400013 doi: 10.1590/S0102-33062013000400013 |