[1] |
CORTéS-USECHE C, MUñIZ-CASTILLO A I, CALLE-TRIVIñO J, et al. Reef condition and protection of coral diversity and evolutionary history in the marine protected areas of Southeastern Dominican Republic [J]. Regional Studies in Marine Science, 2019, 32: 100893. doi: 10.1016/j.rsma.2019.100893 |
[2] |
WOODHEAD A J, HICKS C C, NORSTRöM A V, et al. Coral reef ecosystem services in the Anthropocene [J]. Functional Ecology, 2019, 33(6): 1023 − 1034. |
[3] |
CRABBE M J C. Adapting to extreme environments: can coral reefs adapt to climate change? [J]. Emerging Topics in Life Sciences, 2019, 3(2): 183 − 195. doi: 10.1042/ETLS20180088 |
[4] |
BELLWOOD D R, PRATCHETT M S, MORRISON T H, et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions [J]. Biological Conservation, 2019, 236: 604 − 615. doi: 10.1016/j.biocon.2019.05.056 |
[5] |
HOROSZOWSKI-FRIDMAN Y B, BRÊTHES J, RAHMANI N, et al. Marine silviculture: Incorporating ecosystem engineering properties into reef restoration acts [J]. Ecological Engineering, 2015, 82: 201 − 213. doi: 10.1016/j.ecoleng.2015.04.104 |
[6] |
WILLIAMS S L, SUR C, JANETSKI N, et al. Large-scale coral reef rehabilitation after blast fishing in Indonesia [J]. Restoration Ecology, 2019, 27(2): 447 − 456. doi: 10.1111/rec.12866 |
[7] |
SANTIAGO-VALENTíN J D, RODRíGUEZ-TRONCOSO A P, BAUTISTA-GUERRERO E, et al. Successful sexual reproduction of the scleractinian coral Porites panamensis: Evidence of planktonic larvae and recruitment [J]. Invertebrate Biology, 2019, 138(1): 29 − 39. doi: 10.1111/ivb.12235 |
[8] |
RINKEVICH B. Augmenting coral adaptation to climate change via coral gardening (the nursery phase) [J]. Journal of Environmental Management, 2021, 291: 112727. doi: 10.1016/j.jenvman.2021.112727 |
[9] |
HOROSZOWSKI-FRIDMAN Y B, IZHAKI I, RINKEVICH B. Long-term heightened larval production in nursery-bred coral transplants [J]. Basic and Applied Ecology, 2020, 47: 12 − 21. doi: 10.1016/j.baae.2020.05.003 |
[10] |
GRIFFIN S, SPATHIAS H, MOORE T, et al. Scaling up Acropora nurseries in the Caribbean and improving techniques[C]//Proceedings of the 12th International Coral Reef Symposium. ARC Centre of Excellence for Coral Reef Studies Townsville, 2012. 1: 1 − 5. |
[11] |
GUEST J R, DIZON R M, EDWARDS A J, et al. How quickly do fragments of coral “ Self-Attach” after transplantation? [J]. Restoration Ecology, 2011, 19(2): 234 − 242. doi: 10.1111/j.1526-100X.2009.00562.x |
[12] |
LEVY G, SHAISH L, HAIM A, et al. Mid-water rope nursery—Testing design and performance of a novel reef restoration instrument [J]. Ecological Engineering, 2010, 36(4): 560 − 569. |
[13] |
SHAISH L, LEVY G, GOMEZ E, et al. Fixed and suspended coral nurseries in the Philippines: Establishing the first step in the “gardening concept” of reef restoration [J]. Journal of Experimental Marine Biology and Ecology, 2008, 358(1): 86 − 97. doi: 10.1016/j.jembe.2008.01.024 |
[14] |
FIORE F, SIENA F, SAPONARI L, et al. Users' satisfaction on coral restoration projects: The case of the Maldives [J]. Regional Studies in Marine Science, 2020, 38: 101369. doi: 10.1016/j.rsma.2020.101369 |
[15] |
DUBININKAS V. Effects of substratum on the growth and survivorship of Montipora capitata and Porites lobata transplants [J]. Journal of Experimental Marine Biology and Ecology, 2017, 486: 134 − 139. doi: 10.1016/j.jembe.2016.10.004 |
[16] |
RINKEVICH B. The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world [J]. Journal of Marine Science and Engineering, 2019, 7(7): 201. doi: 10.3390/jmse7070201 |
[17] |
王欣, 高霆炜, 陈骁, 等. 涠洲岛园艺式珊瑚苗圃的架设与移植[J]. 广西科学, 2017, 24(5): 462 − 467. doi: 10.13656/j.cnki.gxkx.20170627.002 |
[18] |
RAYMUNDO L J, MAYPA A P, GOMEZ E D, et al. Can dynamite-blasted reefs recover? A novel, low-tech approach to stimulating natural recovery in fish and coral populations [J]. Marine Pollution Bulletin, 2007, 54(7): 1009 − 1019. doi: 10.1016/j.marpolbul.2007.02.006 |
[19] |
ZHENG X, LI Y, LIANG J, et al. Performance of ecological restoration in an impaired coral reef in the Wuzhizhou Island, Sanya, China [J]. Journal of Oceanology and Limnology, 2021, 39(1): 13. |
[20] |
TEBBETT S B, BELLWOOD D R. Algal turf sediments on coral reefs: what's known and what's next [J]. Marine Pollution Bulletin, 2019, 149: 110542. doi: 10.1016/j.marpolbul.2019.110542 |
[21] |
XU H, FENG B, XIE M, et al. Physiological characteristics and environment adaptability of reef-building corals at the Wuzhizhou Island of South China Sea [J]. Frontiers in Physiology, 2020, 11: 390. doi: 10.3389/fphys.2020.00390 |
[22] |
李秀保, 黄晖, 符曲, 等. 鼻形鹿角珊瑚对不同温度的响应及白化研究[J]. 热带海洋学报, 2006, 25(6): 5. doi: 10.3969/j.issn.1009-5470.2006.06.010 |
[23] |
XIA J, ZHU W, LIU X, et al. The effect of two types of grid transplantation on coral growth and the in-situ ecological restoration in a fragmented reef of the South China Sea [J]. Ecological Engineering, 2022, 177: 106558. doi: 10.1016/j.ecoleng.2022.106558 |
[24] |
EDWARDS A J. Coral reef targeted research & capacity building for management program: St Lucia, Australia[J]. Reef Rehabilitation Manual; Coral Reef Initiative for the South Pacific (CRISP): New Caledonia, France, 2010: 166. |
[25] |
郑新庆, 张涵, 陈彬, 等. 珊瑚礁生态修复效果评价指标体系研究进展[J]. 应用海洋学学报, 2021, 40(1): 126 − 141. |
[26] |
PUTCHIM L,THONGTHAM N, HEWETT A. Survival and growth of Acropora spp. in mid-water nursery and after transplantation at Phi Phi Islands, Andaman Sea, Thailand[J]. Proceeding of the 11th International Coral Reef Symposium, 2008: 1261-1268. |
[27] |
MBIJE N E J, SPANIER E, RINKEVICH B. Testing the first phase of the ‘gardening concept’ as an applicable tool in restoring denuded reefs in Tanzania [J]. Ecological Engineering, 2010, 36(5): 713 − 721. doi: 10.1016/j.ecoleng.2009.12.018 |
[28] |
BROWNE N K, TAY J, TODD P A. Recreating pulsed turbidity events to determine coral–sediment thresholds for active management [J]. Journal of Experimental Marine Biology and Ecology, 2015, 466: 98 − 109. doi: 10.1016/j.jembe.2015.02.010 |
[29] |
LIAO Z, YU K, WANG Y, et al. Coral-algal interactions at Weizhou Island in the northern South China Sea: variations by taxa and the exacerbating impact of sediments trapped in turf algae [J]. PeerJ, 2019, 7: e6590. doi: 10.7717/peerj.6590 |
[30] |
BAROTT K, SMITH J, DINSDALE E, et al. Hyperspectral and physiological analyses of coral-algal interactions [J]. PloS one, 2009, 4(11): e8043. doi: 10.1371/journal.pone.0008043 |
[31] |
GOMEZ-LEMOS L A, DIAZ-PULIDO G. Crustose coralline algae and associated microbial biofilms deter seaweed settlement on coral reefs [J]. Coral Reefs, 2017, 36(2): 453 − 462. doi: 10.1007/s00338-017-1549-x |
[32] |
李银强, 余克服, 王英辉, 等. 珊瑚藻在珊瑚礁发育过程中的作用[J]. 热带地理, 2016, 36(1): 19 − 26. doi: 10.13284/j.cnki.rddl.002805 |
[33] |
QUAN-YOUNG L I, ESPINOZA-AVALOS J. Reduction of zooxanthellae density, chlorophyll a concentration, and tissue thickness of the coral Montastraea faveolata (Scleractinia) when competing with mixed turf algae [J]. Limnology and Oceanography, 2006, 51(2): 1159 − 1166. doi: 10.4319/lo.2006.51.2.1159 |
[34] |
BUENAU K E, PRICE N N, NISBET R M. Size dependence, facilitation, and microhabitats mediate space competition between coral and crustose coralline algae in a spatially explicit model [J]. Ecological Modelling, 2012, 237/238: 23 − 33. doi: 10.1016/j.ecolmodel.2012.04.013 |
[35] |
BAROTT K L, ROHWER F L. Unseen players shape benthic competition on coral reefs [J]. Trends in Microbiology, 2012, 20(12): 621 − 628. doi: 10.1016/j.tim.2012.08.004 |
[36] |
AIROLDI L. Roles of disturbance, sediment stress, and substratum retention on spatial dominance in algal turf [J]. Ecology, 1998, 79(8): 2759 − 2770. doi: 10.1890/0012-9658(1998)079[2759:RODSSA]2.0.CO;2 |
[37] |
GOWAN J C, TOOTELL J S, CARPENTER R C. The effects of water flow and sedimentation on interactions between massive Porites and algal turf [J]. Coral Reefs, 2014, 33(3): 651 − 663. doi: 10.1007/s00338-014-1154-1 |
[38] |
PURCELL S W. Association of epilithic algae with sediment distribution on a windward reef in the northern Great Barrier Reef, Australia[J]. Bulletin of Marine Science, 2000, 66: 199-214 (16). |
[39] |
TEBBETT S B, BELLWOOD D R. Sediments ratchet-down coral reef algal turf productivity [J]. Science of The Total Environment, 2020, 713: 136709. doi: 10.1016/j.scitotenv.2020.136709 |
[40] |
WANGPRASEURT D, WEBER M, RøY H, et al. In situ oxygen dynamics in coral-algal interactions [J]. PLOS ONE, 2012, 7(2): e31192. doi: 10.1371/journal.pone.0031192 |
[41] |
LAYTON C, CAMERON M J, SHELAMOFF V, et al. Chemical Microenvironments within Macroalgal Assemblages: Implications for the Inhibition of Kelp Recruitment by Turf Algae [J]. Limnology and Oceanography, 2019, 64(4): 1600 − 1613. doi: 10.1002/lno.11138 |
[42] |
SWIERTS T, VERMEIJ M J. Competitive interactions between corals and turf algae depend on coral colony form [J]. PeerJ, 2016, 4: e1984. doi: 10.7717/peerj.1984 |
[43] |
GORBUNOV M Y, KOLBER Z S, LESSER M P, et al. Photosynthesis and photoprotection in symbiotic corals [J]. Limnology and Oceanography, 2001, 46(1): 75 − 85. doi: 10.4319/lo.2001.46.1.0075 |
[44] |
ZHAO M, YU K. Application of chlorophyll fluorescence technique in the study of coral symbiotic zooxanthellae micro-ecology [J]. Acta Ecologica Sinica, 2014, 34(3): 165 − 169. doi: 10.1016/j.chnaes.2014.03.006 |
[45] |
BHAGOOLI R, HIDAKA M. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2004, 137(3): 547 − 555. |
[46] |
MACINTYRE I G, TOWE K M. Skeletal calcite in living scleractinian corals: microboring fillings, not primary skeletal deposits [J]. Science, 1976, 193(4254): 701 − 702. doi: 10.1126/science.193.4254.701 |
[47] |
JONES R J. Zooxanthellae loss as a bioassay for assessing stress in corals [J]. Marine Ecology Progress Series, 1997, 149: 163 − 171. doi: 10.3354/meps149163 |
[48] |
SANGMANEE K, CASARETO B E, NGUYEN T D, et al. Influence of thermal stress and bleaching on heterotrophic feeding of two scleractinian corals on pico-nanoplankton [J]. Marine Pollution Bulletin, 2020, 158: 111405. doi: 10.1016/j.marpolbul.2020.111405 |
[49] |
SAWALL Y, TEICHBERG M C, SEEMANN J, et al. Nutritional status and metabolism of the coral Stylophora subseriata along a eutrophication gradient in Spermonde Archipelago (Indonesia) [J]. Coral Reefs, 2011, 30(3): 841 − 853. doi: 10.1007/s00338-011-0764-0 |