[1] |
曹升, 陈江枫, 黄富宇, 等. 广西木薯产业现状分析及其发展建议[J]. 南方农业学报, 2021, 52(6): 1468 − 1476. doi: 10.3969/j.issn.2095-1191.2021.06.005 |
[2] |
付海天, 郑华, 文峰, 等. 中国木薯研究及产业发展趋势 [J]. 农业研究与应用, 2022, 35(4): 9 − 22. |
[3] |
CHISENGA S M, WORKNEH T S, BULTOSA G, et al. Progress in research and applications of cassava flour and starch: a review[J]. Journal of Food Science and Technology, 2019, 56(6): 2799 − 2813. |
[4] |
EGBUNE E O, EZEDOM T, ORORORO O C, et al. Solid-state fermentation of cassava (Manihot esculenta Crantz): a review[J]. World Journal of Microbiology & Biotechnology, 2023, 39(10): 259. |
[5] |
时涛, 李超萍, 王国芬, 等. 中国木薯病害研究进展与展望[J]. 热带作物学报, 2023, 4(12): 2355 − 2368. doi: 10.3969/j.issn.1000-2561.2023.12.001 |
[6] |
CUI Y, LU X, GOU X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives[J]. Plant Communications, 2022, 3(1): 100273. |
[7] |
SELLGE G, KUFER T A. PRR-signaling pathways: Learning from microbial tactics[J]. Seminars in Immunology, 2015, 27(2): 75 − 84. doi: 10.1016/j.smim.2015.03.009 |
[8] |
YUAN M, NGOU B P M, DING P, et al. PTI-ETI crosstalk: an integrative view of plant immunity[J]. Current Opinion in Plant Biology, 2021, 62: 102030. |
[9] |
NGOU B P M, DING P, JONES J D G. Thirty years of resistance: Zig-zag through the plant immune system[J]. The Plant Cell, 2022, 34(5): 1447 − 1478. |
[10] |
DIEVART A, GOTTIN C, PéRIN C, et al. Origin and diversity of plant receptor-like kinases[J]. Annual Review of Plant Biology, 2020, 71: 131 − 156. |
[11] |
WEI Z, LI J. Receptor-like protein kinases: key regulators controlling root hair development in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2018, 60(9): 841 − 850. |
[12] |
SHIU S H, KARLOWSKI W M, PAN R, et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J]. The Plant Cell, 2004, 16(5): 1220 − 1234. |
[13] |
SHIU S H, BLEECKER A B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19): 10763 − 10768. |
[14] |
LEHTI-SHIU M D, ZOU C, HANADA K, et al. Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes[J]. Plant Physiology, 2009, 150(1): 12 − 26. doi: 10.1104/pp.108.134353 |
[15] |
QU J, DRY I, LIU L, et al. Transcriptional profiling reveals multiple defense responses in downy mildew-resistant transgenic grapevine expressing a TIR-NBS-LRR gene located at the MrRUN1/MrRPV1 locus[J]. Horticulture Research, 2021, 8(1): 161. doi: 10.1038/s41438-021-00597-w |
[16] |
周萌萌. MeAHL17转录因子调节木薯对细菌性枯萎病抗性分子机理研究[D]. 海口: 海南大学, 2023. |
[17] |
YUAN J J, ZHAO Y N, YU S H, et al. The Arabidopsis receptor-like kinase WAKL4 limits cadmium uptake via phosphorylation and degradation of NRAMP1 transporter[J]. Nature Communications, 2024, 15(1): 9537. |
[18] |
KANG H, HUANG T, DUAN G, et al. TCOD: an integrated resource for tropical crops[J]. Nucleic Acids Research, 2024, 52(D1): D1651 − D1660. doi: 10.1093/nar/gkad870 |
[19] |
EGGLESTON A K, KOWALCZYKOWSKI S C. An overview of homologous pairing and DNA strand exchange proteins[J]. Biochimie, 1991, 73(2/3): 163 − 176. |
[20] |
CHEN J, SUN Y, CHEN L, et al. NADH-Cytochrome B5 reductase 2 suppresses retinal vascular dysfunction through regulation of vascular endothelial growth factor A in diabetic retinopathy[J]. Experimental Eye Research, 2022, 222: 109186. doi: 10.1016/j.exer.2022.109186 |
[21] |
ZHENG W, GUO J, LU X, et al. cAMP-response element binding protein mediates podocyte injury in diabetic nephropathy by targeting lncRNA DLX6-AS1[J]. Metabolism, 2022, 129: 155155. doi: 10.1016/j.metabol.2022.155155 |
[22] |
GILBERT L, ALHAGDOW M, NUNES-NESI A, et al. GDP-D-mannose 3, 5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato[J]. The Plant Journal, 2009, 60(3): 499 − 508. doi: 10.1111/j.1365-313X.2009.03972.x |
[23] |
XIE C, POWELL C, YAO M, et al. Ubiquitin-conjugating enzyme E2C: a potential cancer biomarker[J]. The International Journal of Biochemistry & Cell Biology, 2014, 47: 113 − 117. |
[24] |
YU Y, SONG Y, CHENG L, et al. CircCEMIP promotes anoikis-resistance by enhancing protective autophagy in prostate cancer cells[J]. Journal of Experimental & Clinical Cancer Research, 2022, 41(1): 188. |
[25] |
ZHANG B, WANG X, ZHAO Z, et al. OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation[J]. Plant Physiology, 2016, 170(2): 1149 − 1161. doi: 10.1104/pp.15.01668 |
[26] |
LU X, KONG X, WU H, et al. UBE2M-mediated neddylation of TRIM21 regulates obesity-induced inflammation and metabolic disorders[J]. Cell Metabolism, 2023, 35(8): 1390 − 1405. doi: 10.1016/j.cmet.2023.05.011 |
[27] |
RICHARD M M S, GRATIAS A, ALVAREZ DIAZ J C, et al. A common bean truncated CRINKLY4 kinase controls gene-for-gene resistance to the fungus Colletotrichum lindemuthianum[J]. Journal of Experimental Botany, 2021, 72(10): 3569 − 3581. doi: 10.1093/jxb/erab082 |
[28] |
XUN Q, WU Y, LI H, et al. Two receptor-like protein kinases, MUSTACHES and MUSTACHES-LIKE, regulate lateral root development in Arabidopsis thaliana[J]. New Phytologist, 2020, 227(4): 1157 − 1173. doi: 10.1111/nph.16599 |
[29] |
WANG J, WANG J, LI J, et al. The RLK protein TaCRK10 activates wheat high-temperature seedling-plant resistance to stripe rust through interacting with TaH2A. 1[J]. The Plant Journal, 2021, 108(5): 1241 − 1255. doi: 10.1111/tpj.15513 |
[30] |
HARUTA M, SABAT G, STECKER K, et al. A peptide hormone and its receptor protein kinase regulate plant cell expansion[J]. Science, 2014, 343(6169): 408 − 411. doi: 10.1126/science.1244454 |
[31] |
LI L, VERSTRAETEN I, ROOSJEN M, et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth[J]. Nature, 2021, 599(7884): 273 − 277. doi: 10.1038/s41586-021-04037-6 |
[32] |
CHEN X, WANG T, REHMAN A U, et al. Arabidopsis U-box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor-like protein kinases LRR1 and KIN7[J]. Journal of Integrative Plant Biology, 2021, 63(3): 494 − 509. doi: 10.1111/jipb.13058 |
[33] |
SU B, ZHANG X, LI L, et al. Dynamic spatial reorganization of BSK1 complexes in the plasma membrane underpins signal-specific activation for growth and immunity[J]. Molecular Plant, 2021, 14(4): 588 − 603. doi: 10.1016/j.molp.2021.01.019 |
[34] |
ZHANG S, HU X, DONG J, et al. Identification, evolution, and expression analysis of OsBSK gene family in Oryza sativa Japonica[J]. BMC Plant Biology, 2022, 22(1): 565. doi: 10.1186/s12870-022-03905-1 |
[35] |
ZADA A, LV M, LI J. Molecular lesions in BRI1 and its orthologs in the plant Kingdom[J]. International Journal of Molecular Sciences, 2024, 25(15): 8111. doi: 10.3390/ijms25158111 |