[1] EVODE N, AHMAD QAMAR S, BILAL M, et al. Plastic waste and its management strategies for environmental sustainability [J]. Case Studies in Chemical and Environmental Engineering, 2021, 100142−100150.
[2] GEYER, R., JAMBECK, J. R., LAW, K. L. Production, use, and fate of all plastics ever made[J]. Sci Adv, 2017, 3(7): e1700782.
[3] TAN H, OTHMAN M H D, CHONG W T, et al. Turning plastics/microplastics into valuable resources? Current and potential research for future applications[J]. Journal of Environmental Management, 2024, 356: 120644. doi:  10.1016/j.jenvman.2024.120644
[4] FERNANDES, CLAYTAN PETER. Use of recycled poly lactic acid (PLA) polymer in 3D printing: a review [J]. 2019, 6(9). 1841−1845
[5] GUO C, ZHANG L Q, JIANG W. Biodegrading plastics with a synthetic non-biodegradable enzyme[J]. Chem, 2023, 9(2): 363 − 376. doi:  10.1016/j.chempr.2022.09.008
[6] SIVAN A, SZANTO M, PAVLOV V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber[J]. Applied Microbiology and Biotechnology, 2006, 72(2): 346 − 352. doi:  10.1007/s00253-005-0259-4
[7] KRISHNASWAMY V G, SRIDHARAN R, KUMAR P S, et al. Cellulase enzyme catalyst producing bacterial strains from vermicompost and its application in low-density polyethylene degradation[J]. Chemosphere, 2022, 288: 132552. doi:  10.1016/j.chemosphere.2021.132552
[8] LUO G, JIN T, ZHANG H, et al. Deciphering the diversity and functions of plastisphere bacterial communities in plastic-mulching croplands of subtropical China[J]. Journal of Hazardous Materials, 2022, 422: 126865. doi:  10.1016/j.jhazmat.2021.126865
[9] TANUNCHAI B, KALKHOF S, GULIYEV V, et al. Nitrogen fixing bacteria facilitate microbial biodegradation of a bio-based and biodegradable plastic in soils under ambient and future climatic conditions[J]. Environmental Science Processes & Impacts, 2022, 24(2): 233 − 241.
[10] 张李婷, 张博, 许维东, 等. 聚乙烯塑料生物降解研究进展[J]. 生物工程学报, 2023, 39(5): 1949 − 1962.
[11]

ZHENG M, LI Y, DONG W, et al. P450-catalyzed polyethylene oligomer degradation: a quantum mechanics/molecular mechanics study[J]. Journal of Cleaner Production, 2023, 389: 136130. doi:  10.1016/j.jclepro.2023.136130
[12]

RESTREPO-FLóREZ J M, BASSI A, THOMPSON M R. Microbial degradation and deterioration of polyethylene–A review[J]. International Biodeterioration & Biodegradation, 2014, 88: 83 − 90.
[13]

REN S Y, NI H G. Biodeterioration of microplastics by bacteria isolated from mangrove sediment[J]. Toxics, 2023, 11(5): 432. doi:  10.3390/toxics11050432
[14]

NELSON D R. Cytochrome P450 diversity in the tree of life[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2018, 1866(1): 141 − 154. doi:  10.1016/j.bbapap.2017.05.003
[15]

GLIEDER A, FARINAS E T, ARNOLD F H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase[J]. Nature Biotechnology, 2002, 20(11): 1135 − 1139. doi:  10.1038/nbt744
[16]

HSIEH S C, WANG J H, LAI Y C, et al. Production of 1-dodecanol, 1-tetradecanol, and 1, 12-dodecanediol through whole-cell biotransformation in Escherichia coli[J]. Applied and Environmental Microbiology, 2018, 84(4): e01806 − 17.
[17]

SCHEPS D, MALCA S H, HOFFMANN H, et al. Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666[J]. Organic & Biomolecular Chemistry, 2011, 9(19): 6727 − 6733.
[18]

CHAUDHARI NM, GUPTA VK, DUTTA C. BPGA- an ultra-fast pan-genome analysis pipeline[J]. Sci. Rep., 2016, 13(8): 6 − 24373.
[19]

BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59 − 60. doi:  10.1038/nmeth.3176
[20]

WICKHAM H. Ggplot2: elegant graphics for data analysis [M]. Dordrecht: Springer, 2009.
[21]

KATOH K, STANDLEY D M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability[J]. Mol Biol Evol, 2013, 30(4): 72 − 80.
[22]

FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching [J]. Nucleic Acids Research, 2011, 39(Web Server issue): W29−W37.
[23]

EMMS D M, KELLY S. OrthoFinder: phylogenetic orthology inference for comparative genomics[J]. Genome Biology, 2019, 20(1): 238. doi:  10.1186/s13059-019-1832-y
[24]

MADEIRA F, MADHUSOODANAN N, LEE J, et al. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024[J]. Nucleic Acids Research, 2024, 52(W1): W521 − W525. doi:  10.1093/nar/gkae241
[25]

CAPELLA-GUTIÉRREZ S, SILLA-MARTÍNEZ J M, GABALDÓN T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15): 1972 − 1973. doi:  10.1093/bioinformatics/btp348
[26]

MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era[J]. Molecular Biology and Evolution, 2020, 37(5): 1530 − 1534. doi:  10.1093/molbev/msaa015
[27]

SHEN W, REN H. TaxonKit: a practical and efficient NCBI taxonomy toolkit[J]. Journal of Genetics and Genomics, 2021, 48(9): 844 − 850. doi:  10.1016/j.jgg.2021.03.006
[28]

LETUNIC I, BORK P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool[J]. Nucleic Acids Research, 2024, 52(W1): W78 − W82. doi:  10.1093/nar/gkae268
[29]

CSURöS M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood[J]. Bioinformatics, 2010, 26(15): 1910 − 1912. doi:  10.1093/bioinformatics/btq315
[30]

BANSAL M S, KELLIS M, KORDI M, et al. RANGER-DTL 2.0: rigorous reconstruction of gene-family evolution by duplication, transfer and loss[J]. Bioinformatics, 2018, 34(18): 3214 − 3216. doi:  10.1093/bioinformatics/bty314
[31]

WALKER C, MORTENSEN M JR, POUDEL B, et al. Proteomes reveal metabolic capabilities of Yarrowia lipolytica for biological upcycling of polyethylene into high-value chemicals[J]. mSystems, 2023, 8(6): e0074123. doi:  10.1128/msystems.00741-23
[32]

WU F, GUO Z, CUI K, et al. Insights into characteristics of white rot fungus during environmental plastics adhesion and degradation mechanism of plastics[J]. Journal of Hazardous Materials, 2023, 448: 130878. doi:  10.1016/j.jhazmat.2023.130878
[33]

WANG P, LIU J, HAN S, et al. Polyethylene mulching film degrading bacteria within the plastisphere: co-culture of plastic degrading strains screened by bacterial community succession[J]. Journal of Hazardous Materials, 2023, 442: 130045. doi:  10.1016/j.jhazmat.2022.130045
[34]

RüTHI J, RAST B M, QI W, et al. The plastisphere microbiome in alpine soils alters the microbial genetic potential for plastic degradation and biogeochemical cycling[J]. Journal of Hazardous Materials, 2023, 441: 129941. doi:  10.1016/j.jhazmat.2022.129941
[35]

HEMME C L, GREEN S J, RISHISHWAR L, et al. Lateral gene transfer in a heavy metal-contaminated-groundwater microbial community[J]. mBio, 2016, 7(2): e02234 − 15.
[36]

ABE T, AKAZAWA Y, TOYODA A, et al. Batch-learning self-organizing map identifies horizontal gene transfer candidates and their origins in entire genomes[J]. Frontiers in Microbiology, 2020, 11: 1486. doi:  10.3389/fmicb.2020.01486
[37]

NAKEI M D, MISINZO G, TINDWA H, et al. Degradation of polyethylene plastic bags and bottles using microorganisms isolated from soils of Morogoro, Tanzania[J]. Frontiers in Microbiology, 2022, 13: 1077588. doi:  10.3389/fmicb.2022.1077588
[38]

KONG D, ZHANG H, YUAN Y, et al. Enhanced biodegradation activity toward polyethylene by fusion protein of anchor peptide and Streptomyces sp. strain K30 latex clearing protein[J]. International Journal of Biological Macromolecules, 2024, 264: 130378. doi:  10.1016/j.ijbiomac.2024.130378
[39]

TAMOOR M, SAMAK N A, JIA Y, et al. Potential use of microbial enzymes for the conversion of plastic waste into value-added products: a viable solution[J]. Frontiers in Microbiology, 2021, 12: 777727. doi:  10.3389/fmicb.2021.777727