[1] |
EVODE N, AHMAD QAMAR S, BILAL M, et al. Plastic waste and its management strategies for environmental sustainability [J]. Case Studies in Chemical and Environmental Engineering, 2021, 100142−100150. |
[2] |
GEYER, R., JAMBECK, J. R., LAW, K. L. Production, use, and fate of all plastics ever made[J]. Sci Adv, 2017, 3(7): e1700782. |
[3] |
TAN H, OTHMAN M H D, CHONG W T, et al. Turning plastics/microplastics into valuable resources? Current and potential research for future applications[J]. Journal of Environmental Management, 2024, 356: 120644. doi: 10.1016/j.jenvman.2024.120644 |
[4] |
FERNANDES, CLAYTAN PETER. Use of recycled poly lactic acid (PLA) polymer in 3D printing: a review [J]. 2019, 6(9). 1841−1845 |
[5] |
GUO C, ZHANG L Q, JIANG W. Biodegrading plastics with a synthetic non-biodegradable enzyme[J]. Chem, 2023, 9(2): 363 − 376. doi: 10.1016/j.chempr.2022.09.008 |
[6] |
SIVAN A, SZANTO M, PAVLOV V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber[J]. Applied Microbiology and Biotechnology, 2006, 72(2): 346 − 352. doi: 10.1007/s00253-005-0259-4 |
[7] |
KRISHNASWAMY V G, SRIDHARAN R, KUMAR P S, et al. Cellulase enzyme catalyst producing bacterial strains from vermicompost and its application in low-density polyethylene degradation[J]. Chemosphere, 2022, 288: 132552. doi: 10.1016/j.chemosphere.2021.132552 |
[8] |
LUO G, JIN T, ZHANG H, et al. Deciphering the diversity and functions of plastisphere bacterial communities in plastic-mulching croplands of subtropical China[J]. Journal of Hazardous Materials, 2022, 422: 126865. doi: 10.1016/j.jhazmat.2021.126865 |
[9] |
TANUNCHAI B, KALKHOF S, GULIYEV V, et al. Nitrogen fixing bacteria facilitate microbial biodegradation of a bio-based and biodegradable plastic in soils under ambient and future climatic conditions[J]. Environmental Science Processes & Impacts, 2022, 24(2): 233 − 241. |
[10] |
张李婷, 张博, 许维东, 等. 聚乙烯塑料生物降解研究进展[J]. 生物工程学报, 2023, 39(5): 1949 − 1962. |
[11] |
ZHENG M, LI Y, DONG W, et al. P450-catalyzed polyethylene oligomer degradation: a quantum mechanics/molecular mechanics study[J]. Journal of Cleaner Production, 2023, 389: 136130. doi: 10.1016/j.jclepro.2023.136130 |
[12] |
RESTREPO-FLóREZ J M, BASSI A, THOMPSON M R. Microbial degradation and deterioration of polyethylene–A review[J]. International Biodeterioration & Biodegradation, 2014, 88: 83 − 90. |
[13] |
REN S Y, NI H G. Biodeterioration of microplastics by bacteria isolated from mangrove sediment[J]. Toxics, 2023, 11(5): 432. doi: 10.3390/toxics11050432 |
[14] |
NELSON D R. Cytochrome P450 diversity in the tree of life[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2018, 1866(1): 141 − 154. doi: 10.1016/j.bbapap.2017.05.003 |
[15] |
GLIEDER A, FARINAS E T, ARNOLD F H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase[J]. Nature Biotechnology, 2002, 20(11): 1135 − 1139. doi: 10.1038/nbt744 |
[16] |
HSIEH S C, WANG J H, LAI Y C, et al. Production of 1-dodecanol, 1-tetradecanol, and 1, 12-dodecanediol through whole-cell biotransformation in Escherichia coli[J]. Applied and Environmental Microbiology, 2018, 84(4): e01806 − 17. |
[17] |
SCHEPS D, MALCA S H, HOFFMANN H, et al. Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666[J]. Organic & Biomolecular Chemistry, 2011, 9(19): 6727 − 6733. |
[18] |
CHAUDHARI NM, GUPTA VK, DUTTA C. BPGA- an ultra-fast pan-genome analysis pipeline[J]. Sci. Rep., 2016, 13(8): 6 − 24373. |
[19] |
BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59 − 60. doi: 10.1038/nmeth.3176 |
[20] |
WICKHAM H. Ggplot2: elegant graphics for data analysis [M]. Dordrecht: Springer, 2009. |
[21] |
KATOH K, STANDLEY D M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability[J]. Mol Biol Evol, 2013, 30(4): 72 − 80. |
[22] |
FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching [J]. Nucleic Acids Research, 2011, 39(Web Server issue): W29−W37. |
[23] |
EMMS D M, KELLY S. OrthoFinder: phylogenetic orthology inference for comparative genomics[J]. Genome Biology, 2019, 20(1): 238. doi: 10.1186/s13059-019-1832-y |
[24] |
MADEIRA F, MADHUSOODANAN N, LEE J, et al. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024[J]. Nucleic Acids Research, 2024, 52(W1): W521 − W525. doi: 10.1093/nar/gkae241 |
[25] |
CAPELLA-GUTIÉRREZ S, SILLA-MARTÍNEZ J M, GABALDÓN T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15): 1972 − 1973. doi: 10.1093/bioinformatics/btp348 |
[26] |
MINH B Q, SCHMIDT H A, CHERNOMOR O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era[J]. Molecular Biology and Evolution, 2020, 37(5): 1530 − 1534. doi: 10.1093/molbev/msaa015 |
[27] |
SHEN W, REN H. TaxonKit: a practical and efficient NCBI taxonomy toolkit[J]. Journal of Genetics and Genomics, 2021, 48(9): 844 − 850. doi: 10.1016/j.jgg.2021.03.006 |
[28] |
LETUNIC I, BORK P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool[J]. Nucleic Acids Research, 2024, 52(W1): W78 − W82. doi: 10.1093/nar/gkae268 |
[29] |
CSURöS M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood[J]. Bioinformatics, 2010, 26(15): 1910 − 1912. doi: 10.1093/bioinformatics/btq315 |
[30] |
BANSAL M S, KELLIS M, KORDI M, et al. RANGER-DTL 2.0: rigorous reconstruction of gene-family evolution by duplication, transfer and loss[J]. Bioinformatics, 2018, 34(18): 3214 − 3216. doi: 10.1093/bioinformatics/bty314 |
[31] |
WALKER C, MORTENSEN M JR, POUDEL B, et al. Proteomes reveal metabolic capabilities of Yarrowia lipolytica for biological upcycling of polyethylene into high-value chemicals[J]. mSystems, 2023, 8(6): e0074123. doi: 10.1128/msystems.00741-23 |
[32] |
WU F, GUO Z, CUI K, et al. Insights into characteristics of white rot fungus during environmental plastics adhesion and degradation mechanism of plastics[J]. Journal of Hazardous Materials, 2023, 448: 130878. doi: 10.1016/j.jhazmat.2023.130878 |
[33] |
WANG P, LIU J, HAN S, et al. Polyethylene mulching film degrading bacteria within the plastisphere: co-culture of plastic degrading strains screened by bacterial community succession[J]. Journal of Hazardous Materials, 2023, 442: 130045. doi: 10.1016/j.jhazmat.2022.130045 |
[34] |
RüTHI J, RAST B M, QI W, et al. The plastisphere microbiome in alpine soils alters the microbial genetic potential for plastic degradation and biogeochemical cycling[J]. Journal of Hazardous Materials, 2023, 441: 129941. doi: 10.1016/j.jhazmat.2022.129941 |
[35] |
HEMME C L, GREEN S J, RISHISHWAR L, et al. Lateral gene transfer in a heavy metal-contaminated-groundwater microbial community[J]. mBio, 2016, 7(2): e02234 − 15. |
[36] |
ABE T, AKAZAWA Y, TOYODA A, et al. Batch-learning self-organizing map identifies horizontal gene transfer candidates and their origins in entire genomes[J]. Frontiers in Microbiology, 2020, 11: 1486. doi: 10.3389/fmicb.2020.01486 |
[37] |
NAKEI M D, MISINZO G, TINDWA H, et al. Degradation of polyethylene plastic bags and bottles using microorganisms isolated from soils of Morogoro, Tanzania[J]. Frontiers in Microbiology, 2022, 13: 1077588. doi: 10.3389/fmicb.2022.1077588 |
[38] |
KONG D, ZHANG H, YUAN Y, et al. Enhanced biodegradation activity toward polyethylene by fusion protein of anchor peptide and Streptomyces sp. strain K30 latex clearing protein[J]. International Journal of Biological Macromolecules, 2024, 264: 130378. doi: 10.1016/j.ijbiomac.2024.130378 |
[39] |
TAMOOR M, SAMAK N A, JIA Y, et al. Potential use of microbial enzymes for the conversion of plastic waste into value-added products: a viable solution[J]. Frontiers in Microbiology, 2021, 12: 777727. doi: 10.3389/fmicb.2021.777727 |