| [1] | YANG F, HUANG J J, XU S S, et al. Influence of nitrogen-poor wastewater on activated sludge aggregation and settling: sequential responses of extracellular proteins and exopolysaccharides [J]. Journal of Cleaner Production, 2022, 359, 132160. https://doi.org/10.1016/j.jclepro.2022.132160 doi: 10.1016/j.jclepro.2022.132160 |
| [2] | TUNAY D, YILDIRIM O, OZKAYA B, et al. Effect of organic fraction of municipal solid waste addition to high rate activated sludge system for hydrogen production from carbon rich waste sludge [J]. International Journal of Hydrogen Energy, 2022, 47 (62), 26284−26293. https://doi.org/10.1016/j.ijhydene.2022.04.299 doi: 10.1016/j.ijhydene.2022.04.299 |
| [3] | SHI H X, WANG X, GUO J S, et al. A new filamentous bulking control strategy: the role of N-acyl homoserine lactone (AHL)-mediated quorum sensing in filamentous bacteria proliferation within activated sludge [J]. Chemical Engineering Journal, 2022, 428, 132097. https://doi.org/10.1016/j.cej.2021.132097 doi: 10.1016/j.cej.2021.132097 |
| [4] | 刘战广. 城镇污水处理厂供氧效率和运行能耗监测评估与优化[J]. 给水排水, 2021, 47(7), 32−37. https://doi.org/10.13789/j.cnki.wwe1964.2021.07.006 doi: 10.13789/j.cnki.wwe1964.2021.07.006 |
| [5] | 彭永臻, 郭建华, 王淑莹, 等. 低溶解氧污泥微膨胀节能理论与方法的发现、提出及理论基础[J]. 环境科学, 2008, 29(12), 3342−3347. https://doi.org/10.3321/j.issn:0250-3301.2008.12.008 doi: 10.3321/j.issn:0250-3301.2008.12.008 |
| [6] | GUO J H, PENG Y Z, PENG C Y, et al. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen [J]. Bioresource Technology, 2010, 101 (4), 1120−1126. https://doi.org/10.1016/j.biortech.2009.09.051 doi: 10.1016/j.biortech.2009.09.051 |
| [7] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 1-836. |
| [8] | 顾晓丹, 黄勇, 丁永伟, 等. 改良型UNITANK工艺冬季运行特性及微生物群落分析[J]. 环境工程学报, 2021, 15(7), 2480−2487. https://doi.org/10.12030/j.cjee.202102134 doi: 10.12030/j.cjee.202102134 |
| [9] | YANG C, ZHANG W, LIU R H, et al. Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants [J]. Environmental Science & Technology, 2011, 45 (17), 7408−7415. https://doi.org/10.1021/es2010545 doi: 10.1021/es2010545 |
| [10] | TRUBITSYN I V, BELOUSOVA E V, TUTUKINA M N, et al. Expansion of ability of denitrification within the filamentous colorless sulfur bacteria of the genus Thiothrix [J]. FEMS Microbiology Letters, 2014, 358 (1), 72−80. https://doi.org/10.1111/1574-6968.12548 doi: 10.1111/1574-6968.12548 |
| [11] | 高春娣, 程丽阳, 韩颖璐, 等. A2/O工艺Microthrix parvicella型微膨胀污泥微生物群落特征[J]. 北京工业大学学报, 2023, 49(8), 906−915. https://doi.org/10.11936/bjutxb2021110028 doi: 10.11936/bjutxb2021110028 |
| [12] | 敖强. 城镇污水处理厂活性污泥丝状菌膨胀控制技术研究[D]. 西安: 西安建筑科技大学, 2020. https://doi.org/10.27393/d.cnki.gxazu.2020.000359 |
| [13] | 彭赵旭, 王淑莹, 彭永臻, 等. 污泥微膨胀的特性及Ns和DO对其影响[J]. 哈尔滨工业大学学报, 2010, 42(10), 1600−1604. https://doi.org/10.11918/j.issn.0367-6234.2010.10.018 doi: 10.11918/j.issn.0367-6234.2010.10.018 |
| [14] | 杨敏, 杨思敏, 范念斯, 等. 微丝菌诱发污泥膨胀生长特性控制策略研究进展[J]. 环境工程学报, 2019, 13(2), 253−263. https://doi.org/10.12030/j.cjee.201811091 doi: 10.12030/j.cjee.201811091 |
| [15] | FEI X N, YUE Y Q, JIAO X M, et al. Effect of temperature on the relationship between quorum-sensing and sludge bulking [J]. Journal of Water Process Engineering, 2024, 58, 104883. https://doi.org/10.1016/j.jwpe.2024.104883 doi: 10.1016/j.jwpe.2024.104883 |
| [16] | NI Y J, YANG J Q, PAN J Y, et al. Effects of enhanced biological phosphorus removal on rapid control of sludge bulking and fast formation of aerobic granular sludge [J]. Bioresource Technology, 2024, 402, 130820. https://doi.org/10.1016/j.biortech.2024.130820 doi: 10.1016/j.biortech.2024.130820 |
| [17] | GAO C D, YANG F, TIAN Z N, et al. Pathways of inhibition of filamentous sludge bulking by slowly biodegradable organic compounds [J]. Journal of Environmental Sciences, 2025, 150, 104−115. https://doi.org/10.1016/j.jes.2024.03.021 doi: 10.1016/j.jes.2024.03.021 |
| [18] | CAI W, ZHAO L Y, ZHANG J, et al. Aerobic granules extraction inhibits overgrowth of filamentous bacteria during start-up of aerobic granular sludge [J]. Bioresource Technology, 2025, 420, 132113. https://doi.org/10.1016/j.biortech.2025.132113 doi: 10.1016/j.biortech.2025.132113 |
| [19] | WU X W, HUANG J, LU Z C, et al. Thiothrix eikelboomii interferes oxygen transfer in activated sludge [J]. Water Research, 2019, 151, 134−143. https://doi.org/10.1016/j.watres.2018.12.019 doi: 10.1016/j.watres.2018.12.019 |
| [20] | DE GRAAFF D R, VAN LOOSDRECHT M C M, PRONK M. Stable granulation of seawater-adapted aerobic granular sludge with filamentous Thiothrix bacteria [J]. Water Research, 2020, 175, 115683. https://doi.org/10.1016/j.watres.2020.115683 doi: 10.1016/j.watres.2020.115683 |
| [21] | CHEN H W, HU X B, SONG W W, et al. Effect of pistachio shell as a carbon source to regulate C/N on simultaneous removal of nitrogen and phosphorus from wastewater [J]. Bioresource Technology, 2023, 367, 128234. https://doi.org/10.1016/j.biortech.2022.128234 doi: 10.1016/j.biortech.2022.128234 |
| [22] | WANG X C, SHEN J M, KANG J, et al. Mechanism of oxytetracycline removal by aerobic granular sludge in SBR [J]. Water Research, 2019, 161, 308−318. https://doi.org/10.1016/j.watres.2019.06.014 doi: 10.1016/j.watres.2019.06.014 |
| [23] | 邵芃泠, 陈莹, 陈晓欣, 等. 低溶解氧条件下活性污泥污染物同步去除效能[J]. 哈尔滨商业大学学报(自然科学版), 2019, 35(4), 410−412. https://doi.org/10.3969/j.issn.1672-0946.2019.04.007 doi: 10.3969/j.issn.1672-0946.2019.04.007 |
| [24] | 史印杰. 水库好氧反硝化细菌脱氮特性与种群结构研究[D]. 西安: 西安建筑科技大学, 2022. doi: 10.27393/d.cnki.gxazu.2022.000178 |
| [25] | FARIA C V, RICCI B C, SILVA A F R, et al. Removal of micropollutants in domestic wastewater by expanded granular sludge bed membrane bioreactor [J]. Process Safety and Environmental Protection, 2020, 136, 223−233. https://doi.org/10.1016/j.psep.2020.01.033 doi: 10.1016/j.psep.2020.01.033 |
| [26] | LI S Y, WANG L P, LIU B, et al. Insight into sludge bulking in a full-scale wastewater treatment plant: quorum sensing, microbial community, and metabolic characteristics [J]. Environmental Technology & Innovation, 2024, 34, 103562. https://doi.org/10.1016/j.eti.2024.103562 doi: 10.1016/j.eti.2024.103562 |
| [27] | FU K M, BIAN Y H, YANG F, et al. Achieving partial nitrification: a strategy for washing NOB out under high DO condition [J]. Journal of Environmental Management, 2023, 347, 119186. https://doi.org/10.1016/j.jenvman.2023.119186 doi: 10.1016/j.jenvman.2023.119186 |
| [28] | OWAES M, GANI K M, KUMARI S, et al. Achieving partial nitrification by harnessing basic hydrolysis of sulphide salts amid high dissolved oxygen conditions [J]. Journal of Environmental Chemical Engineering, 2023, 11 (5), 111000. https://doi.org/10.1016/j.jece.2023.111000 doi: 10.1016/j.jece.2023.111000 |