[1] |
张春霞, 何明霞, 李加智, 等. 云南西双版纳地区橡胶炭疽病病原鉴定[J]. 植物保护, 2008, 34(1): 103 − 106. |
[2] |
赵晓宇, 王记圆, 廖小淼, 等. 橡胶树炭疽菌蛋白激酶A催化亚基基因的克隆及表达[J]. 基因组学与应用生物学, 2019, 38(8): 3622 − 3628. |
[3] |
林春花, 孙董董, 韩丹, 等. 中国橡胶树苗圃2种炭疽病菌分子鉴定及分布分析[J]. 热带作物学报, 2014, 35(9): 1802 − 1808. doi: 10.3969/j.issn.1000-2561.2014.09.024 |
[4] |
李文杨, 郑春耀, 李超萍, 等. 中国橡胶树主栽品系和部分种质对尖孢炭疽病的室内抗性评价[J]. 热带农业工程, 2009, 33(5): 31 − 36. |
[5] |
郭云峰, 安邦. 橡胶树胶孢炭疽菌NADPH氧化酶功能研究[J]. 生物技术通报, 2018, 34(10): 165 − 171. |
[6] |
FENG L, DONG M, HUANG Z, et al. CgCFEM1 is required for the full virulence of Colletotrichum gloeosporioides[J]. International Journal of Molecular Sciences, 2024, 25(5): 2937. doi: 10.3390/ijms25052937 |
[7] |
李娴, 陈思思, 谢剑波. 杨树响应胶孢炭疽菌侵染的转录组学研究[J]. 北京林业大学学报, 2024, 46(4): 91 − 102. doi: 10.12171/j.1000-1522.20210481 |
[8] |
ZHANG Z N, WU Q Y, ZHANG G Z, et al. Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi[J]. Scientific Reports, 2015, 5: 13032. |
[9] |
KULKARNI R D, THON M R, PAN H, et al. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea[J]. Genome Biology, 2005, 6(3): R24. doi: 10.1186/gb-2005-6-3-r24 |
[10] |
谢薇. 稻瘟病菌诱导植物细胞死亡基因MoCFEM的功能分析 [D]. 福州: 福建农林大学, 2015. |
[11] |
KOU Y, TAN Y H, RAMANUJAM R, et al. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast[J]. New Phytologist, 2017, 214(1): 330 − 342. |
[12] |
CAI N, LIU R, YAN D, et al. Bioinformatics analysis and functional characterization of the CFEM proteins of Metarhizium anisopliae[J]. Journal of Fungi, 2022, 8(7): 661. |
[13] |
ZUO N, BAI W Z, WEI W Q, et al. Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance[J]. Cell Reports, 2022, 41(13): 111877. doi: 10.1016/j.celrep.2022.111877 |
[14] |
DEZWAAN T M, CARROLL A M, VALENT B, et al. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues[J]. The Plant Cell, 1999, 11(10): 2013 − 2030. |
[15] |
ARYA G C, SRIVASTAVA D A, PANDARANAYAKA E P J, et al. Characterization of the role of a non-GPCR membrane-bound CFEM protein in the pathogenicity and germination of Botrytis cinerea[J]. Microorganisms, 2020, 8(7): 1043. |
[16] |
CHEN L, WANG H, YANG J, et al. Bioinformatics and transcriptome analysis of CFEM proteins in Fusarium graminearum[J]. Journal of Fungi, 2021, 7(10): 871. |
[17] |
QIAN Y, ZHENG X, WANG X, et al. Systematic identification and functional characterization of the CFEM proteins in poplar fungus Marssonina brunnea[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 1045615. |
[18] |
LIANG F, LIU L, LI C, et al. Systematic identification and functional characterization of the CFEM proteins in fishscale bamboo rhombic-spot pathogen Neostagonosporella sichuanensis[J]. Frontiers in Plant Science, 2024, 15: 1396273. |
[19] |
GRUBER S, OMANN M, ZEILINGER S. Comparative analysis of the repertoire of G protein-coupled receptors of three species of the fungal genus Trichoderma[J]. BMC Microbiology, 2013, 13: 108. |
[20] |
DILKS T, HALSEY K, DE VOS R P, et al. Non-canonical fungal G-protein coupled receptors promote Fusarium head blight on wheat[J]. PLoS Pathogens, 2019, 15(4): e1007666. |
[21] |
WANG J X, LONG F, ZHU H, et al. Bioinformatic analysis and functional characterization of CFEM proteins in Setosphaeria Turcica[J]. Journal of Integrative Agriculture, 2021, 20(9): 2438 − 2449. |
[22] |
SHANG S, LIU G, ZHANG S, et al. A fungal CFEM-containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity[J]. Plant Biotechnology Journal, 2024, 22(1): 82 − 97. |
[23] |
刘思珍, 欧阳超, 满益龙, 等. 辣椒胶孢炭疽菌CFEM效应因子鉴定及转录组分析[J]. 南京农业大学学报, 2021, 44(6): 1074 − 1082. doi: 10.7685/jnau.202102013 |
[24] |
张丽勍, 段可, 邹小花, 等. 草莓胶孢炭疽菌CFEM候选效应子的生物信息学鉴定及其侵染过程中的转录分析[J]. 植物保护, 2017, 43(5): 43 − 51. doi: 10.3969/j.issn.0529-1542.2017.05.006 |
[25] |
井忠英. 玉米炭疽病菌CFEM效应子的系统鉴定与功能分析 [D]. 北京: 中国农业科学院, 2015. |
[26] |
WANG X, LU D, TIAN C. Mucin Msb2 cooperates with the transmembrane protein Sho1 in various plant surface signal sensing and pathogenic processes in the poplar anthracnose fungus Colletotrichum gloeosporioides[J]. Molecular Plant Pathology, 2021, 22(12): 1553 − 1573. |
[27] |
XU X, LI G, LI L, et al. Genome-wide comparative analysis of putative Pth11-related G protein-coupled receptors in fungi belonging to Pezizomycotina[J]. BMC Microbiology, 2017, 17(1): 166. |
[28] |
WANG Q, AN B, HOU X, et al. Dicer-like proteins regulate the growth, conidiation, and pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis[J]. Frontiers in Microbiology, 2018, 8: 2621. doi: 10.3389/fmicb.2017.02621 |
[29] |
PENG J, WU L, ZHANG W, et al. Systemic identification and functional characterization of common in fungal extracellular membrane proteins in Lasiodiplodia theobromae[J]. Frontiers in Plant Science, 2021, 12: 804696. |
[30] |
SCHAMBER A, LEROCH M, DIWO J, et al. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea[J]. Molecular Plant Pathology, 2010, 11(1): 105 − 119. doi: 10.1111/j.1364-3703.2009.00579.x |
[31] |
LIU W, ZHOU X, LI G, et al. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation[J]. PLoS Pathogens, 2011, 7(1): e1001261. doi: 10.1371/journal.ppat.1001261 |
[32] |
SABNAM N, ROY BARMAN S. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus[J]. Fungal Genetics and Biology, 2017, 105: 37 − 51. doi: 10.1016/j.fgb.2017.05.006 |