[1] |
张念台. 蓟马为害杂粮之习性及其防治[J]. 中华昆虫特刊, 1987(1): 55 − 72. |
[2] |
邱海燕, 刘奎, 李鹏, 等. 豆大蓟马的生物学特性研究[J]. 热带作物学报, 2014, 35(12): 2437 − 2441. doi: 10.3969/j.issn.1000-2561.2014.12.021 |
[3] |
TANG L D, YAN K L, FU B L, et al. The life table parameters of Megalurothrips usitatus (Thysanoptera: Thripidae)on four leguminouscrops[J]. Florida Entomologist, 2015, 98(2): 620 − 625. doi: 10.1653/024.098.0235 |
[4] |
谭珂, 李曼娟, 陈鑫, 等. 普通大蓟马产卵选择性初探[J]. 热带作物学报, 2015, 36(3): 587 − 590. doi: 10.3969/j.issn.1000-2561.2015.03.024 |
[5] |
范咏梅, 童晓立, 高良举, 等. 普通大蓟马在海南豇豆上的空间分布型[J]. 环境昆虫学报, 2013, 35(6): 737 − 743. |
[6] |
谭珂, 陈鑫, 李曼娟, 等. 普通大蓟马在3种豆类作物上的实验种群生命表研究[J]. 热带作物学报, 2015, 36(5): 956 − 960. doi: 10.3969/j.issn.1000-2561.2015.05.021 |
[7] |
唐良德, 赵海燕, 付步礼, 等. 海南地区豆大蓟马田间种群的抗药性监测[J]. 环境昆虫学报, 2016, 38(5): 1032 − 1037. |
[8] |
罗亚丽, 施丹, 乔雪莹, 等. 杀虫剂亚致死浓度对普通大蓟马繁殖的影响[J]. 应用昆虫学报, 2020, 57(2): 427 − 433. doi: 10.7679/j.issn.2095-1353.2020.048 |
[9] |
SCHOWALTER T D. Insect ecology: an ecosystem approach[M]. 4th ed. London, UK: Academic Press, 2016. |
[10] |
STUART R R, GAO Y L, LEI Z R. Thrips: pests of concern to China and the United States[J]. Agricultural Sciences in China, 2011, 10(6): 867 − 892. doi: 10.1016/S1671-2927(11)60073-4 |
[11] |
WANG K, SHIPP J L. Simulation model for the population dynamics of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse cucumber[J]. Environmental Entomology, 2001, 30(6): 1073 − 1081. doi: 10.1603/0046-225X-30.6.1073 |
[12] |
BONDY E C, HUNTER M S. Sex ratios in the haplodiploid herbivores, Aleyrodidae and Thysanoptera: a review and tools for study[M]//JURENKA R (ed. ). Advances in Insect Physiology. Vol. 56. Cambridge: Academic Press Inc. , 2019: 251-281. |
[13] |
WAN Y, HUSSAIN S, MERCHANT A, et al. Tomato spotted wilt orthotospovirus influences the reproduction of its insect vector, western flower thrips, Frankliniella occidentalis, to facilitate transmission[J]. Pest Management Science, 2020, 76(7): 2406 − 2414. doi: 10.1002/ps.5779 |
[14] |
KATLAV A, NGUYEN DT, COOK JM, et al. Constrained sex allocation after mating in a haplodiploid thrips species depends on maternal condition[J]. Evolution, 2021, 75(6): 1525 − 1536. doi: 10.1111/evo.14217 |
[15] |
杨鹤鸣, 叶子龙, 黄慧秀, 等. 普通大蓟马子代性比对同种成虫气味的响应[J]. 热带生物学报, 2022, 13(6): 628 − 633. |
[16] |
AWMACK C S, LEATHER S R. Host plant quality and fecundity in herbivorous insects[J]. Annual Review of Entomology, 2002, 47: 817 − 844. doi: 10.1146/annurev.ento.47.091201.145300 |
[17] |
BALA B, SOOD A K, PATHANIA V S, et al. Effect of plant nutrition in insect pest management: a review[J]. Journal of Pharmacognosy and Phytochemistry, 2018, 7(4): 2737 − 2742. |
[18] |
中华人民共和国农业部. 无公害食品 豇豆生产技术规程: NY/T 5079—2002 [S]. 北京: 中国标准出版社, 2006. |
[19] |
HUNT D, CARTER N, DRURY C. The influence of nitrogen on seedless cucumber resistance and susceptibility to western flower thrips[J]. Acta Horticulturae, 1999(481): 561 − 568. |
[20] |
BAEZ I, REITZ S R, FUNDERBURK J E, et al. Variation within and between Frankliniella thrips species in host plant utilization[J]. Journal of Insect Science (Online), 2011, 11(1): 41. |
[21] |
BRODBECK B V, STAVISKY J, FUNDERBURK J E, et al. Flower nitrogen status and populations of Frankliniella occidentalis feeding on Lycopersicon esculentum[J]. Entomologia Experimentalis et Applicata, 2001, 99(2): 165 − 172. doi: 10.1046/j.1570-7458.2001.00814.x |
[22] |
BRODBECK B V, FUNDERBURK J, STAVISKY J, et al. Recent advances in the nutritional ecology of Thysanoptera, or the lack thereof[M]//MARULLO R, MOUND L A (eds.). Thrips and tospoviruses: Proceedings of the 7th international symposium on Thysanoptera. Canberra: Australian National Insect Collection, 2002: 145–153. |
[23] |
MACKE E, MAGALHÃES S, BACH F, et al. Sex-ratio adjustment in response to local mate competition is achieved through an alteration of egg size in a haplodiploid spider mite[J]. Proceedings Biological Sciences, 2012, 279(1747): 4634 − 4642. doi: 10.1098/rspb.2012.1598 |
[24] |
TAGHIZADEH R, CHI H. Demography of Tetranychus urticae (Acari: Tetranychidae) under different nitrogen regimes with estimations of confidence intervals[J]. Crop Protection, 2022, 155: 105920. doi: 10.1016/j.cropro.2022.105920 |
[25] |
WERMELINGER B, DELUCCHI V. Effect of sex-ratio on multiplication of the two-spotted spider mite as affected by leaf nitrogen[J]. Experimental & Applied Acarology, 1990, 9(1/2): 11 − 18. |
[26] |
MOUDEN S, SARMIENTO K F, KLINKHAMER P G, et al. Integrated pest management in western flower thrips: past, present and future[J]. Pest Management Science, 2017, 73(5): 813 − 822. doi: 10.1002/ps.4531 |
[27] |
REITZ S R, GAO Y, KIRK W D J, et al. Invasion biology, ecology, and management of western flower thrips[J]. Annual Review of Entomology, 2020, 65: 17 − 37. doi: 10.1146/annurev-ento-011019-024947 |
[28] |
STAVISKY J, FUNDERBURK J, BRODBECK B V, et al. Population dynamics of Frankliniella spp. and tomato spotted wilt incidence as influenced by cultural management tactics in tomato[J]. Journal of Economic Entomology, 2002, 95(6): 1216 − 1221. doi: 10.1603/0022-0493-95.6.1216 |
[29] |
SCHUCH U K, REDAK R A, BETHKE J A. Cultivar, fertilizer and irrigation affect vegetative growth and susceptibility of chrysanthemum to western flower thrips[J]. Journal of the American Society for Horticultural Science, 1998, 123(4): 727 − 733. doi: 10.21273/JASHS.123.4.727 |
[30] |
DAVIES F, CHUANJIU HE C, AMANDA CHAU A, et al. Fertiliser application affects susceptibility of chrysanthemum to western flower thrips - abundance and influence on plant growth, photosynthesis and stomatal conductance[J]. The Journal of Horticultural Science and Biotechnology, 2005, 80(4): 403 − 412. doi: 10.1080/14620316.2005.11511952 |
[31] |
CHAU A, HEINZ K M, DAVIES FT. Influences of fertilization on population abundance, distribution, and control of Frankliniella occidentalis on chrysanthemum[J]. Entomologia Experimentalis et Applicata, 2005, 117(1): 27 − 39. doi: 10.1111/j.1570-7458.2005.00326.x |
[32] |
CHOW A, CHAU A, HEINZ K M. Reducing fertilization: a management tactic against western flower thrips on roses[J]. Journal of Applied Entomology, 2012, 136(7): 520 − 529. doi: 10.1111/j.1439-0418.2011.01674.x |
[33] |
ANANTHAKRISHNAN T N. Bionomics of thrips[J]. Annual Review of Entomology, 1993, 38: 71 − 92. doi: 10.1146/annurev.en.38.010193.000443 |
[34] |
MOLLEMA C, COLE R A. Low aromatic amino acid concentrations in leaf proteins determine resistance to Frankliniella occidentalis in four vegetable crops[J]. Entomologia Experimentalis et Applicata, 1996, 78(3): 325 − 333. doi: 10.1111/j.1570-7458.1996.tb00797.x |
[35] |
SYMPHORIEN A, KARUNGI J, ODONG T L, et al. Biochemical constituents influencing the resistance to flower bud thrips in cowpea [Vigna unguiculata (L.) Walp] germplasm[J]. The Journal of Animal and Plant Sciences, 2018, 28(1): 128 − 137. |
[36] |
RAJASHREE S B, KABRE G B, MORE S R, et al. Biochemical traits of groundnut genotypes for their reaction to thrips[J]. Pharma Innovation, 2021, 10(11): 126 − 132. |