[1] |
ORDONEZ N, SEIDL M F, WAALWIJK C, et al. Worse comes to worst: bananas and Panama disease:when plant and pathogen clones meet[J]. PLoS Pathogens, 2015, 11(11): e1005197. doi: 10.1371/journal.ppat.1005197 |
[2] |
王田, 陈代朋, 高雅, 等. 香蕉枯萎病菌效应蛋白研究进展[J]. 农业生物技术学报, 2022, 30(8): 1614 − 1621. doi: 10.3969/j.issn.1674-7968.2022.08.016 |
[3] |
PLOETZ R C. Fusarium wilt of banana[J]. Phytopathology, 2015, 105(12): 1512 − 1521. doi: 10.1094/PHYTO-04-15-0101-RVW |
[4] |
PLOETZ R C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense[J]. Phytopathology, 2006, 96(6): 653 − 656. doi: 10.1094/PHYTO-96-0653 |
[5] |
KEMA G H J, DRENTH A, DITA M, et al. Editorial: Fusarium wilt of banana, a recurring threat to global banana production[J]. Frontiers in Plant Science, 2021, 11: 628888. doi: 10.3389/fpls.2020.628888 |
[6] |
PLOETZ R C. Management of Fusarium wilt of banana: a review with special reference to tropical race 4[J]. Crop Protection, 2015, 73: 7 − 15. doi: 10.1016/j.cropro.2015.01.007 |
[7] |
SPOEL S H, DONG X. How do plants achieve immunity? Defence without specialized immune cells[J]. Nature Reviews Immunology, 2012, 12(2): 89 − 100. doi: 10.1038/nri3141 |
[8] |
JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323 − 329. doi: 10.1038/nature05286 |
[9] |
DUBERY I A, SANABRIA N M, HUANG J C. Nonselfperception in plant innate immunity [M]. New York: Springer, 2012: 79 − 107. |
[10] |
JONES J D G, VANCE R E, DANGL J L. Intracellular innate immune surveillance devices in plants and animals[J]. Science, 2016, 354(6316): aaf6395. doi: 10.1126/science.aaf6395 |
[11] |
NEWMAN M A, SUNDELIN T, NIELSEN J T, et al. MAMP (microbe-associated molecular pattern) triggered immunity in plants[J]. Frontiers in Plant Science, 2013, 4: 139. |
[12] |
WANG Y, PRUITT R N, NÜRNBERGER T, et al. Evasion of plant immunity by microbial pathogens[J]. Nature Reviews Microbiology, 2022, 20(8): 449 − 464. doi: 10.1038/s41579-022-00710-3 |
[13] |
GHAG S B, SHEKHAWAT U K S, GANAPATHI T R. Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants[J]. AoB PLANTS, 2014, 6: plu037. doi: 10.1093/aobpla/plu037 |
[14] |
PAUL J Y, BECKER D K, DICKMAN M B, et al. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas[J]. Plant Biotechnology Journal, 2011, 9(9): 1141 − 1148. doi: 10.1111/j.1467-7652.2011.00639.x |
[15] |
GUO L, HAN L, YANG L, et al. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f.sp. cubense causing banana vascular wilt disease[J]. PLoS One, 2014, 9(4): e95543. doi: 10.1371/journal.pone.0095543 |
[16] |
ZHANG X, HUANG H, WU B, et al. The M35 metalloprotease effector FocM35_1 is required for full virulence of Fusarium oxysporum f.sp. cubense tropical race 4[J]. Pathogens, 2021, 10(6): 670. doi: 10.3390/pathogens10060670 |
[17] |
WANG Q, HAN C, FERREIRA A O, et al. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire[J]. The Plant Cell, 2011, 23(6): 2064 − 2086. doi: 10.1105/tpc.111.086082 |
[18] |
LACOMME C, SANTA CRUZ S. Bax-induced cell death in tobacco is similar to the hypersensitive response[J]. Poceedings of the National Academy of Sciences of the United States of America, 1999, 96(14): 7956 − 7961. doi: 10.1073/pnas.96.14.7956 |
[19] |
JAMIR Y, GUO M, OH H S, et al. Identification of Pseudomonas syringae type Ⅲ effectors that can suppress programmed cell death in plants and yeast[J]. The Plant Journal, 2004, 37(4): 554 − 565. doi: 10.1046/j.1365-313X.2003.01982.x |
[20] |
SHANG S, WANG B, ZHANG S, et al. A novel effector CfEC92 of Colletotrichum fructicola contributes to glomerella leaf spot virulence by suppressing plant defences at the early infection phase[J]. Molecular Plant Pathology, 2020, 21(7): 936 − 950. doi: 10.1111/mpp.12940 |
[21] |
KAMOUN S, VAN W P, VLEESHOUWERS V G, et al. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1[J]. The Plant Cell, 1998, 10(9): 1413 − 1426. doi: 10.1105/tpc.10.9.1413 |
[22] |
XIANG J, LI X, WU J, et al. Studying the mechanism of Plasmopara viticola RxLR effectors on suppressing plant immunity[J]. Frontiers in Microbiology, 2016, 7: 709. |
[23] |
LEI X, LAN X, YE W, et al. Plasmopara viticola effector PvRXLR159 suppresses immune responses in Nicotiana benthamiana[J]. Plant Signaling & Behavior, 2019, 14(12): 1682220. |
[24] |
TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022 − 3027. doi: 10.1093/molbev/msab120 |
[25] |
LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947 − 2948. doi: 10.1093/bioinformatics/btm404 |
[26] |
ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SØNDERBY C K, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks[J]. Nature Biotechnology, 2019, 37(4): 420 − 423. doi: 10.1038/s41587-019-0036-z |
[27] |
KROGH A, LARSSON B, VON HEIJNE G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J]. Journal of Molecular Biology, 2001, 305(3): 567 − 580. doi: 10.1006/jmbi.2000.4315 |
[28] |
YIN W, WANG Y, CHEN T, et al. Functional evaluation of the signal peptides of secreted proteins[J]. BIO-PROTOCOL, 2018, 8(9): e2839. |
[29] |
REP M, VAN DER DOES H C, MEIJER M, et al. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato[J]. Molecular Microbiology, 2004, 53(5): 1373 − 1383. doi: 10.1111/j.1365-2958.2004.04177.x |
[30] |
WIDINUGRAHENI S, NIÑO-SÁNCHEZ J, VAN DER DOES H C, et al. A SIX1 homolog in Fusarium oxysporum f. sp. cubense tropical race 4 contributes to virulence towards Cavendish banana[J]. PLoS One, 2018, 13(10): e0205896. doi: 10.1371/journal.pone.0205896 |
[31] |
HOUTERMAN P M, MA L, VAN OOIJEN G, et al. The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly[J]. The Plant Journal, 2009, 58(6): 970 − 978. doi: 10.1111/j.1365-313X.2009.03838.x |
[32] |
GURDASWANI V, GHAG S B, GANAPATHI T R. FocSge1 in Fusarium oxysporum f.sp. cubense race 1 is essential for full virulence[J]. BMC Microbiology, 2020, 20(1): 255. doi: 10.1186/s12866-020-01936-y |
[33] |
WANG Y, ZHANG X, WANG T, et al. The small secreted protein FoSsp1 elicits plant defenses and negatively regulates pathogenesis in Fusarium oxysporum f.sp. cubense (Foc4)[J]. Frontiers in Plant Science, 2022, 13: 873451. doi: 10.3389/fpls.2022.873451 |
[34] |
LEE M C S, MILLER E A, GOLDBERG J, et al. Bi-directional protein transport between the er and Golgi[J]. Annual Review of Cell and Developmental Biology, 2004, 20: 87 − 123. doi: 10.1146/annurev.cellbio.20.010403.105307 |
[35] |
KANG Q, ZHANG D. Principle and potential applications of the non-classical protein secretory pathway in bacteria[J]. Applied Microbiology and Biotechnology, 2020, 104(3): 953 − 965. doi: 10.1007/s00253-019-10285-4 |