[1] IPCC. Global Warming of 1.5 ℃: An IPCC Special Report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [M]. Cambridge: Cambridge University Press, 2018.
[2] IPCC. Climate Change 2014: Mitigation of climatechange. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change [M]. Cambridge: Cambridge University Press, 2014.
[3] ZHOU M, WANG X, WANG Y, et al. A three-year experiment of annual methane and nitrous oxide emissions from the subtropical permanently flooded rice paddy fields of China: emission factor, temperature sensitivity and fertilizer nitrogen effect [J]. Agricultural and Forest Meteorology, 2018, 250: 299 − 307.
[4] ASHIQ W, NADEEM M, ALI W, et al. Biochar amendment mitigates greenhouse gases emission and global warming potential in dairy manure based silage corn in boreal climate [J]. Environmental Pollution, 2020, 265: 114869. doi:  10.1016/j.envpol.2020.114869
[5] 胡玉麟, 汤水荣, 陶凯, 等. 优化施肥模式对我国热带地区水稻-豇豆轮作系统 N2O 和 CH4排放的影响[J]. 环境科学, 2019, 40(11): 5182 − 5190.
[6] SMITH P, MARTINO D, CAI Z, et al. Greenhouse Gas mitigation in agriculture [J]. Philosophical Transactions:Biological Sciences, 2008, 363(1492): 789 − 813. doi:  10.1098/rstb.2007.2184
[7] XING G, ZHAO X, XIONG Z Q, et al. Nitrous oxide emission from paddy fields in China [J]. Acta Ecologica Sinica, 2009, 29(1): 45 − 50. doi:  10.1016/j.chnaes.2009.04.006
[8] 王紫君, 王鸿浩, 李金秋, 等. 椰糠生物炭对热区双季稻田N2O和CH4排放的影响[J]. 环境科学, 2021, 42(8): 3931 − 3942.
[9] 田伟, 伍延正, 孟磊, 等. 不同施肥模式对热区晚稻水田CH4 和N2O排放的影响[J]. 环境科学, 2019, 40(5): 2426 − 2434.
[10] WELLER S, JANZ B, JORG L, et al. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems [J]. Global Change Biology, 2016, 22(1): 432 − 448. doi:  10.1111/gcb.13099
[11] 石生伟, 李玉娥, 刘运通, 等. 中国稻田CH4和N2O排放及减排整合分析[J]. 中国农业科学, 2010, 43(14): 2923 − 2936. doi:  10.3864/j.issn.0578-1752.2010.14.011
[12] RIBAS A, MATTANA S, LLURBA R, et al. Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem: Role of biologically-induced anoxic microsites [J]. Science of the Total Environment, 2019, 685: 1075 − 1086. doi:  10.1016/j.scitotenv.2019.06.277
[13] SMITH P. Soil carbon sequestration and biochar as negative emission technologies [J]. Global Chang Biology, 2016, 22(3): 1315 − 1324. doi:  10.1111/gcb.13178
[14] 汪勇, 吕茹洁, 黎星, 等. 生物炭与氮肥施用对双季稻田温室气体排放的影响[J]. 中国稻米, 2021, 27(1): 20 − 26.
[15] HUANG Y, WANG C, LIN C, et al. Methane and nitrous oxide flux after biochar application in subtropical acidic paddy soils under tobacco-rice rotation [J]. Scientific RepoRtS, 2019, 9(1): 17277. doi:  10.1038/s41598-019-53044-1
[16] LIU X, REN J, ZHANG Q, et al. Long-term effects of biochar addition and straw return on N2O fluxes and the related functional gene abundances under wheat-maize rotation system in the North China Plain [J]. Applied Soil Ecology, 2019, 135: 44 − 55. doi:  10.1016/j.apsoil.2018.11.006
[17] ZHANG A F, CUI L Q, PAN G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China [J]. Agriculture, Ecosystems and Environment, 2010, 139(4): 469 − 475. doi:  10.1016/j.agee.2010.09.003
[18] SHEN J L, TANG H, LIU J Y, et al. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems [J]. Agriculture, Ecosystems and Environment, 2014, 188: 264 − 274. doi:  10.1016/j.agee.2014.03.002
[19] 桑琳. 增温及秸秆施用对农田土壤呼吸及酶活性的影响 [D]. 南京: 南京信息工程大学, 2017.
[20] 张杏雨, 李思宇, 余锋, 等. 作物秸秆还田对稻田温室气体排放效应的研究进展[J]. 杂交水稻, 2021, 36(5): 1 − 7.
[21] ZHANG A, CHENG G, HUSSAIN Q, et al. Contrasting effects of straw and straw–derived biochar application on net global warming potential in the Loess Plateau of China [J]. Field Crops Research, 2017, 205: 45 − 54. doi:  10.1016/j.fcr.2017.02.006
[22] WANG J, CHEN Z, XU C, et al. Organic amendment enhanced microbial nitrate immobilization with negligible denitrification nitrogen loss in an upland soil [J]. Environmental Pollution, 2021, 288: 117721. doi:  10.1016/j.envpol.2021.117721
[23] DUAN M, WU F, JIA Z, et al. Wheat straw and its biochar differently affect soil properties and field-based greenhouse gas emission in a Chernozemic soil [J]. Biology and Fertility of Soils, 2020, 56(7): 1023 − 1036. doi:  10.1007/s00374-020-01479-4
[24] LIU X, MAO P, LI L, et al. Impact of biochar application on yield-scaled greenhouse gas intensity: A meta-analysis [J]. Science of the Total Environment, 2019, 656: 969 − 976. doi:  10.1016/j.scitotenv.2018.11.396
[25] 唐占明, 刘杏认, 张晴雯, 等. 对比研究生物炭和秸秆对麦玉轮作系统N2O排放的影响[J]. 环境科学, 2021, 42(3): 1569 − 1580.
[26] WU Q, LIAN R, BAI M, et al. Biochar co-application mitigated the stimulation of organic amendments on soil respiration by decreasing microbial activities in an infertile soil [J]. Biology and Fertility of Soils, 2021, 57(6): 793 − 807. doi:  10.1007/s00374-021-01574-0
[27] 吴金水, 林启美. 土壤微生物生物量测定方法及其应用 [M]. 北京: 气象出版社, 2006.
[28] 鲍士旦. 土壤农化分析 [M]. 北京: 中国农业出版社, 2000.
[29] FENG Y Z, XU Y P, YU Y C, et al. Mechanisms of biochar decreasing methane emission from Chinese paddy soils [J]. Soil Biology and Biochemistry, 2011, 46: 80 − 88.
[30] STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity [J]. Soil Biology and Biochemistry, 2009, 41(6): 1301 − 1310. doi:  10.1016/j.soilbio.2009.03.016
[31] WANG W, CHEN C, WU X, et al. Effects of reduced chemical fertilizer combined with straw retention on greenhouse gas budget and crop production in double rice fields [J]. Biology and Fertility of Soils, 2018, 55(1): 89 − 96.
[32] HUANG S, SUN Y N, YU X C, et al. Interactive effects of temperature and moisture on CO2 and CH4 production in a paddy soil under long-term different fertilization regimes [J]. Biology and Fertility of Soils, 2016, 52(3): 285 − 294. doi:  10.1007/s00374-015-1075-3
[33] WEI L, GE T, ZHU Z, et al. Paddy soils have a much higher microbial biomass content than upland soils: A review of the origin, mechanisms, and drivers [J]. Agriculture, Ecosystems and Environment, 2022, 326: 107798. doi:  10.1016/j.agee.2021.107798
[34] CHEN H H, LI X C, HU F, et al. Soil nitrous oxide emissions following crop residue addition: a meta-analysis [J]. Global change biology, 2013, 19(10): 2956 − 2964. doi:  10.1111/gcb.12274
[35] WANG H, YU L F, ZHANG Z H, et al. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland [J]. Global Change Biology, 2017, 23(2): 815 − 829. doi:  10.1111/gcb.13467
[36] HU A, LU Y. The differential effects of ammonium and nitrate on methanotrophs in rice field soil [J]. Soil Biology and Biochemistry, 2015, 85: 31 − 38. doi:  10.1016/j.soilbio.2015.02.033
[37] 王鸿浩, 谭梦怡, 王紫君, 等. 不同水分管理条件下添加生物炭对琼北地区水稻土N2O排放的影响[J]. 环境科学, 2021, 65(2): 3943 − 3952.
[38] 曹文超. 农田土壤N2O排放的关键过程及影响因素[J]. 植物营养与肥料学报, 2019, 25(10): 1781 − 1798. doi:  10.11674/zwyf.18441
[39] 程谊, 张金波, 蔡祖聪. 气候-土壤-作物之间氮形态契合在氮肥管理中的关键作用[J]. 土壤学报, 2019, 56(3): 507 − 515. doi:  10.11766/trxb201812030523
[40] NOVAK J M, BUSSCHER W J, WATTS D W, et al. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult [J]. Geoderma, 2010, 154(3-4): 281 − 288. doi:  10.1016/j.geoderma.2009.10.014
[41] WU Y, LI Y, WANG H, et al. Response of N2O emissions to biochar amendment on a tea field soil in subtropical central China: A three-year field experiment [J]. Agriculture, Ecosystems and Environment, 2021, 318: 107473. doi:  10.1016/j.agee.2021.107473
[42] LIU J, JIANG B S, SHEN J L, et al. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems [J]. Agriculture, Ecosystems and Environment, 2021, 311: 107286. doi:  10.1016/j.agee.2020.107286
[43] 房秋娜. 外源碳氮和秸秆还田对土壤酶活性和碳组分及水稻产量的影响 [D]. 哈尔滨: 东北农业大学, 2021.