[1] ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene responsible for alkaline phosphatase isozyme conversion in Escherichia coli and identification of the gene product [J]. Journal of Bacteriology, 1987, 169(12): 5429 − 5433. doi:  10.1128/JB.169.12.5429-5433.1987
[2] JANSEN R, EMBDEN J D, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Molecular Microbiology, 2002, 43(6): 1565 − 1575. doi:  10.1046/j.1365-2958.2002.02839.x
[3] MAKAROVA K S, GRISHIN N V, SHABALINA S A, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action [J]. Biology Direct, 2006, 1(7): 1 − 26.
[4] BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science, 2007, 315(5819): 1709 − 1712. doi:  10.1126/science.1138140
[5] KONERMANN S, LOTFY P, BRIDEAU N J, et al. Transcriptome engineering with RNA-targeting type Ⅵ-D CRISPR e ffectors [J]. Cell, 2018, 173(3): 665 − 676. doi:  10.1016/j.cell.2018.02.033
[6] LUCAS B H, DAVID B, JANICE S C, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes [J]. Science, 2018, 362(6416): 839 − 842. doi:  10.1126/science.aav4294
[7] HYATT D, CHEN G L, LOCASCIO P F, et al. Prodigal: prokaryotic gene recognition andtranslation initiation site identification [J]. Bmc Bioinformatics, 2010, 11(119): 1 − 11.
[8] DELCHER A L, BRATKE K A, POWERS E C, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer [J]. Bioinformatics, 2007, 23(6): 673 − 679. doi:  10.1093/bioinformatics/btm009
[9] BESEMER J, LOMSADZE A, BORODOVSKY M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions [J]. Nucleic Acids Research, 2001, 29(12): 2607 − 2618. doi:  10.1093/nar/29.12.2607
[10] BURSTEIN D, HARRINGTON L B, STRUTT S C, et al. New CRISPR-Cas systems from uncultivated microbes [J]. Nature, 2017, 542(7640): 237 − 241. doi:  10.1038/nature21059
[11] 周海廷. 隐马尔科夫过程在生物信息学中的应用[J]. 生命科学研究, 2002, 6(3): 204 − 210. doi:  10.3969/j.issn.1007-7847.2002.03.004
[12] WONG K M, SUCHARD M A, HUELSENBECK J P. Alignment Uncertainty and Genomic Analysis [J]. Science, 2008, 319(5862): 473 − 476. doi:  10.1126/science.1151532
[13] POTTER S C, LUCIANI A, EDDY S R, et al. HMMER web server: 2018 update [J]. Nucleic Acids Research, 2018(46): 200 − 204.
[14] BISWAS A, STAALS J, MORALES S E, et al. CRISPRDetect: A flexible algorithm to define CRISPR arrays [J]. BMC Genomics, 2016, 17(1): 1 − 14.
[15] IBTISSEM G, GILLES V, CHRISTINE P. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats [J]. Nucleic Acids Research, 2007(35): 52 − 57.
[16] Robert C E. PILER-CR: Fast and accurate identification of CRISPR repeats [J]. BMC Bioinformatics, 2007, 8(18): 1 − 6.
[17] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cassystem [J]. Cell, 2015(163): 1 − 13.
[18] COUVIN D, BERNHEIM A, TOFFANO-NIOCHE C, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version enhanced performance and integrates search for Casproteins [J]. Nuclc Acids Research, 2018(46): 246 − 251.
[19] TAKEUCHI N, WOLF Y I, MAKAROVA S, et al. Nature and intensity of selection pressure on CRISPR-associated genes [J]. Journal of Bacteriology, 2011, 194(5): 1216 − 1225.
[20] SHMAKOV S, SMARGON A, SCOTT D, et al. Diversity and evolution of class 2 CRISPR–Cassystems [J]. Nature Reviews Microbiology, 2017, 15(3): 169 − 182. doi:  10.1038/nrmicro.2016.184
[21] WENHAN ZHU, LOMSADZE A, BORODOVSKY M. Ab initio gene identification in metagenomic sequences [J]. Nucleic Acids Research, 2010, 38(12): e132. doi:  10.1093/nar/gkq275
[22] MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cassystems [J]. Nature Reviews Microbiology, 2015, 13(3569): 722 − 736.
[23] SMARGON A A, COX D B, PYZOCHA N K, et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNasedifferentially regulated by accessory proteins Csx27 and Csx28 [J]. Molecular Cell, 2017(65): 618 − 630.
[24] NISHIMASU H, RAN A F, PATRICK D H, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA [J]. Cell, 2014(156): 935 − 949.
[25] NISHIMASU H, CONG L, YAN W, et al. Crystal structure of Staphylococcus aureusCas9 [J]. Cell, 2015, 162(5): 1113 − 1126. doi:  10.1016/j.cell.2015.08.007
[26] YAMANO T, NISHIMASU H, ZETSCHE B, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA [J]. Cell, 2016, 165(4): 949 − 962. doi:  10.1016/j.cell.2016.04.003
[27] 唐东明, 朱清新, 陈科, 等. 一种有效的蛋白质序列聚类分析方法[J]. 软件学报, 2011, 22(8): 1827 − 1837.
[28] YING ZHAO, KARYPIS G. Data clustering in life sciences [J]. Molecular Biotechnology, 2005, 31(1): 55 − 80. doi:  10.1385/MB:31:1:055
[29] LI L. OrthoMCL: Identification of orthologgroups for eukaryotic genomes [J]. Genome Research, 2003, 13(9): 2178 − 2189. doi:  10.1101/gr.1224503
[30] ENRIGHT A J, DONGEN S V, OUZOUNIS C A. An efficient algorithm for large-scale detection of protein families [J]. Nucleic Acids Research, 2002, 30(7): 1575 − 1584. doi:  10.1093/nar/30.7.1575
[31] ARON M B, PANCHENKO A R, SHOEMAKER B A, et al. CDD: a database of conserved domain alignments with links to domain three-dimensional structure [J]. Nucleic Acids Research, 2002(30): 281 − 283.
[32] UNIPROT C. The UniProt Consortium. UniProt: a hub for protein information [J]. Nucleic Acids Research, 2015, 43(D1): D204 − D212. doi:  10.1093/nar/gku989
[33] REMMERT M, BIEGERT A, HAUSERA, et al. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment [J]. Nature Methods, 2011, 9(2): 173 − 175.
[34] ALEXANDROS S. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies [J]. Bioinformatics, 2014(9): 1312 − 1313.
[35] GASCUEL O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 [J]. Systematic Biology, 2010, 59(3): 307 − 321. doi:  10.1093/sysbio/syq010
[36] IVICA L, PEER B. Interactive Tree of Life (iTOL): An online tool for phylogenetic tree display and annotation[M]. New York: Oxford University Press, 2007.
[37] MAKAROVA K S, WOLF Y I, KOONIN E V. Comparative genomics of defense systems in archaea and bacteria [J]. Nucleic Acids Research, 2013, 41(8): 4360 − 4377. doi:  10.1093/nar/gkt157
[38] Alexey D, Christian C, James P, et al. JPred4: a protein secondary structure prediction server [J]. Nucleic Acids Research, 2015, 43(332): 389 − 394.
[39] MARCHLER-BAUER A, STEPHEN H B. CDD: conserved domains and protein three-dimensional structure [J]. Nucleic Acids Research, 2004, 32(454): 327 − 331.
[40] SODINGJ. Protein homology detection by HMM-HMM comparison. [J]. Bioinformatics, 2005(21): 951 − 960.
[41] KELLEY L A, MEZULIS S, YATES C M, et al. The Phyre2 web portal for protein modeling, prediction and analysis [J]. Nature Protocol, 2015, 10(6): 845 − 858. doi:  10.1038/nprot.2015.053
[42] ROY A, KUCUKURAL A, ZHANG Y. I-TASSER: a unified platform for automated protein structure and function prediction [J]. Nature Protocols, 2010, 5(4): 725 − 738. doi:  10.1038/nprot.2010.5
[43] SKENNERTON C T, MICHAEL I, TYSON G W. Crass: identification and reconstruction of CRISPR from unassembled metagenomicdata [J]. Nucleic Acids Research, 2013, 41(10): 105. doi:  10.1093/nar/gkt183
[44] ZHANG Z, SCHWARTZ S, WAGNER L, et al. A greedy algorithm for aligning DNA sequences. [J]. Journal of Computational Biology, 2000, 7(2): 203 − 214.
[45] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816 − 821. doi:  10.1126/science.1225829
[46] GAVIN E C, GARY H, JOHN J M, et al. WebLogo: a sequence logo generator [J]. Genome Research, 2004, 14(6): 1188 − 1190. doi:  10.1101/gr.849004
[47] MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants [J]. Nature Reviews Microbiology, 2020, 18(2): 67 − 83. doi:  10.1038/s41579-019-0299-x
[48] KOONIN E V, MAKAROVA K S. Mobile genetic elements and evolution of CRISPR-Cassystems: all the way there and back [J]. Genome Biology and Evolution, 2017, 9(10): 2812 − 2825. doi:  10.1093/gbe/evx192
[49] GUILHEM F K, MAKAROVA K S, KOONIN E V. CRISPR-Cas: complex functional networks and multiple roles beyond adaptive immunity [J]. Journal of Molecular Biology, 2019, 4(431): 3 − 20.
[50] PETERS J E, MAKAROVA K S, SHMAKOV S, et al. Recruitment of CRISPR-Cas systems by Tn7-like transposons [J]. Proceedings of the National Academy of Sciences, 2017, 114(35): 7358 − 7366. doi:  10.1073/pnas.1709035114
[51] MIGLE K, GEORGIJ K, CESLOVAS V, et al. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cassystems [J]. Science, 2017(357): 605 − 609.
[52] NIEWOEHNER O, GARCIA-DOVAL C, ROSTOL J T, et al. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers [J]. Nature, 2017, 548(7669): 543 − 548. doi:  10.1038/nature23467