[1] 杨倩, 薛璐, 郭慧, 等. 植物根际促生菌防治黄瓜枯萎病的研究进展[J]. 中国瓜菜, 2022, 35(1): 1−8. https://doi.org/10.3969/j.issn.1673-2871.2022.01.001 doi:  10.3969/j.issn.1673-2871.2022.01.001
[2] 海南省统计局, 国家统计局海南调查总队. 海南统计年鉴2024[M]. 北京: 中国统计出版社, 2024: 2
[3] Zhang X Z, Meng X H, Jiao X D, et al. Physiological mechanism beneath the inhibition of Cleome spinosa against the morphology and reproduction of Fusarium oxysporum [J]. Heliyon, 2023, 9(12): e22622. https://doi.org/10.1016/j.heliyon.2023.e22622 doi:  10.1016/j.heliyon.2023.e22622
[4] Ye X F, Li Z K, Luo X, et al. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community [J]. Microbiome, 2020, 8(1): 49. https://doi.org/10.1186/s40168-020-00824-x doi:  10.1186/s40168-020-00824-x
[5] Yang F, Jiang H Y, Chang G Z, et al. Effects of rhizosphere microbial communities on cucumber Fusarium wilt disease suppression [J]. Microorganisms, 2023, 11(6): 1576. https://doi.org/10.3390/microorganisms11061576 doi:  10.3390/microorganisms11061576
[6] Ahn I P, Chung H S, Lee Y H. Vegetative compatibility groups and pathogenicity among isolates of Fusarium oxysporum f. sp. cucumerinum [J]. Plant Disease, 1998, 82(2): 244−246. https://doi.org/10.1094/PDIS.1998.82.2.244 doi:  10.1094/PDIS.1998.82.2.244
[7] Cabrera De La Fuente M, Felix Leyva J T, Delgado Martinez R, et al. Grafting and soil with drought stress can increase the antioxidant status in cucumber [J]. Agronomy, 2023, 13(4): 994. https://doi.org/10.3390/agronomy13040994 doi:  10.3390/agronomy13040994
[8] Nishioka T, Marian M, Kobayashi I, et al. Microbial basis of Fusarium wilt suppression by Allium cultivation [J]. Scientific Reports, 2019, 9(1): 1715. https://doi.org/10.1038/s41598-018-37559-7 doi:  10.1038/s41598-018-37559-7
[9] Piasai O, Anyong T, Khewkhom N, et al. Fungicides control black rot in Vanda: a strategy to avoid fungicide resistance [J]. European Journal of Plant Pathology, 2024, 169(2): 247−257. https://doi.org/10.1007/s10658-024-02824-1 doi:  10.1007/s10658-024-02824-1
[10] Islam T, Danishuddin, Tamanna N T, et al. Resistance mechanisms of plant pathogenic fungi to fungicide, environmental impacts of fungicides, and sustainable solutions [J]. Plants, 2024, 13(19): 2737. https://doi.org/10.3390/plants13192737 doi:  10.3390/plants13192737
[11] Xu M, Shi Y, Fan D L, et al. Co-culture of white rot fungi Pleurotus ostreatus P5 and Bacillus amyloliquefaciens B2: a strategy to enhance lipopeptide production and suppress of Fusarium wilt of cucumber [J]. Journal of Fungi, 2023, 9(11): 1049. https://doi.org/10.3390/jof9111049 doi:  10.3390/jof9111049
[12] Karačić V, Miljaković D, Marinković J, et al. Bacillus species: excellent biocontrol agents against tomato diseases [J]. Microorganisms, 2024, 12(3): 457. https://doi.org/10.3390/microorganisms12030457 doi:  10.3390/microorganisms12030457
[13] Li M, Ma G S, Lian H, et al. The effects of Trichoderma on preventing cucumber fusarium wilt and regulating cucumber physiology [J]. Journal of Integrative Agriculture, 2019, 18(3): 607−617. https://doi.org/10.1016/S2095-3119(18)62057-X doi:  10.1016/S2095-3119(18)62057-X
[14] Lu D D, Ma Z, Xu X H, et al. Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum [J]. Journal of Basic Microbiology, 2016, 56(8): 929−933. https://doi.org/10.1002/jobm.201500666 doi:  10.1002/jobm.201500666
[15] 王猛, 吴含, 段海明, 等. 解淀粉芽胞杆菌SJ1606产脂肽粗提物协同代森锰锌对2种植物病菌的抑制效果[J]. 安徽农业大学学报, 2024, 51(2): 223−229. https://doi.org/10.13610/j.cnki.1672-352x.20240510.016 doi:  10.13610/j.cnki.1672-352x.20240510.016
[16] Jia K, Gao Y H, Huang X Q, et al. Rhizosphere inhibition of cucumber fusarium wilt by different surfactin-excreting strains of Bacillus subtilis [J]. The Plant Pathology Journal, 2015, 31(2): 140−151. https://doi.org/10.5423/PPJ.OA.10.2014.0113 doi:  10.5423/PPJ.OA.10.2014.0113
[17] Xu Z H, Zhang R F, Wang D D, et al. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation [J]. Applied and Environmental Microbiology, 2014, 80(9): 2941−2950. https://doi.org/10.1128/AEM.03943-13 doi:  10.1128/AEM.03943-13
[18] 季倩茹, 陈静, 胡远亮, 等. 3种芽孢杆菌菌剂对黄瓜枯萎病的防效及其作用机制初探[J]. 华中农业大学学报, 2020, 39(5): 101−107. https://doi.org/10.13300/j.cnki.hnlkxb.2020.05.014 doi:  10.13300/j.cnki.hnlkxb.2020.05.014
[19] Ta Y, Fu S W, Liu H, et al. Evaluation of Bacillus velezensis F9 for cucumber growth promotion and suppression of Fusarium wilt disease [J]. Microorganisms, 2024, 12(9): 1882. https://doi.org/10.3390/microorganisms12091882 doi:  10.3390/microorganisms12091882
[20] 兰成忠, 甘林, 代玉立, 等. 黄瓜枯萎病菌拮抗菌的筛选、鉴定和防效测定[J]. 中国生物防治学报, 2023, 39(1): 184−193. https://doi.org/10.16409/j.cnki.2095-039x.2023.02.006 doi:  10.16409/j.cnki.2095-039x.2023.02.006
[21] 廖延雄. 《伯杰氏鉴定细菌学手册》与《伯杰氏分类细菌学手册》[J]. 微生物学通报, 1992, 19(4): 249. https://doi.org/10.13344/j.microbiol.china.1992.04.017 doi:  10.13344/j.microbiol.china.1992.04.017
[22] 中华人民共和国农业部. NY/T 1857.3—2010 黄瓜主要病害抗病性鉴定技术规程 第3部分: 黄瓜抗枯萎病鉴定技术规程[S]. 北京: 中国农业出版社, 2010. 3−4.
[23] Zhang L, Liu Z R, Pu Y L, et al. Antagonistic strain Bacillus velezensis JZ mediates the biocontrol of Bacillus altitudinis m-1, a cause of leaf spot disease in strawberry [J]. International Journal of Molecular Sciences, 2024, 25(16): 8872. https://doi.org/10.3390/ijms25168872 doi:  10.3390/ijms25168872
[24] Tahir H A S, Ali Q, Rajer F U, et al. Transcriptomic analysis of Ralstonia solanacearum in response to antibacterial volatiles of Bacillus velezensis FZB42 [J]. Archives of Microbiology, 2023, 205(11): 358. https://doi.org/10.1007/s00203-023-03697-4 doi:  10.1007/s00203-023-03697-4
[25] Su L H, Zhang J Y, Fan J Y, et al. Antagonistic mechanism analysis of Bacillus velezensis JLU-1, a biocontrol agent of rice pathogen Magnaporthe oryzae [J]. Journal of Agricultural and Food Chemistry, 2024, 72(36): 19657−19666. https://doi.org/10.1021/acs.jafc.4c05353 doi:  10.1021/acs.jafc.4c05353
[26] Yang F, Wang X, Jiang H Y, et al. Formation of a novel antagonistic bacterial combination to enhance biocontrol for cucumber Fusarium wilt [J]. Microorganisms, 2025, 13(1): 133. https://doi.org/10.3390/microorganisms13010133 doi:  10.3390/microorganisms13010133
[27] Sugiyama T, Natsuaki K T, Tanaka N, et al. Antagonism of Bacillus velezensis isolate from anaerobically digested dairy slurry against Fusarium wilt of spinach [J]. Agronomy, 2022, 12(5): 1058. https://doi.org/10.3390/agronomy12051058 doi:  10.3390/agronomy12051058
[28] Xia X Y, Wei Q H, Wu H X, et al. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot [J]. Microbiome, 2024, 12(1): 156. https://doi.org/10.1186/s40168-024-01887-w doi:  10.1186/s40168-024-01887-w
[29] Zhou J E, Liang J F, Zhang X Y, et al. Trichoderma brevicompactum 6311: prevention and control of Phytophthora capsici and its growth-promoting effect [J]. Journal of Fungi, 2025, 11(2): 105. https://doi.org/10.3390/jof11020105 doi:  10.3390/jof11020105
[30] Li G L, Shi M X, Wan W H, et al. Maize endophytic plant growth-promoting bacteria Peribacillus simplex can alleviate plant saline and alkaline stress [J]. International Journal of Molecular Sciences, 2024, 25(20): 10870. https://doi.org/10.3390/ijms252010870 doi:  10.3390/ijms252010870
[31] Soliman A, Matar S, Abo-Zaid G. Production of Bacillus velezensis Strain GB1 as a biocontrol agent and its impact on Bemisia tabaci by inducing systemic resistance in a squash plant [J]. Horticulturae, 2022, 8(6): 511. https://doi.org/10.3390/horticulturae8060511 doi:  10.3390/horticulturae8060511
[32] Kashyap N, Singh S K, Yadav N, et al. Biocontrol screening of endophytes: applications and limitations [J]. Plants, 2023, 12(13): 2480. https://doi.org/10.3390/plants12132480 doi:  10.3390/plants12132480