[1] |
YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annual Review of Plant Biology, 2006, 57: 781 − 803. doi: 10.1146/annurev.arplant.57.032905.105444 |
[2] |
QIN F, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Achievements and challenges in understanding plant abiotic stress responses and tolerance[J]. Plant and Cell Physiology, 2011, 52(9): 1569 − 1582. doi: 10.1093/pcp/pcr106 |
[3] |
KLINE K G, BARRETT-WILT G A, SUSSMAN M R. In planta changes in protein phosphorylation induced by the plant hormone abscisic acid[J]. Proceedings of the National Academy of Sciences of theUnited States of America, 2010, 107(36): 15986 − 15991. doi: 10.1073/pnas.1007879107 |
[4] |
FINKELSTEIN R. Abscisic Acid synthesis and response[J]. The Arabidopsis Book, 2013, 11: e0166. doi: 10.1199/tab.0166 |
[5] |
MELCHER K, NG L M, ZHOU X E, et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors[J]. Nature, 2009, 462(7273): 602 − 608. doi: 10.1038/nature08613 |
[6] |
MIYAZONO K I, MIYAKAWA T, SAWANO Y, et al. Structural basis of abscisic acid signalling[J]. Nature, 2009, 462(7273): 609 − 614. doi: 10.1038/nature08583 |
[7] |
YIN P, FAN H, HAO Q, et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins[J]. Nature Structural & Molecular Biology, 2009, 16(12): 1230 − 1236. doi: 10.1038/nsmb.1730 |
[8] |
HAIDER M S, ZHANG C, KURJOGI M M, et al. Insights into grapevine defense response against drought as revealed by biochemical, physiological and RNA-Seq analysis[J]. Scientific Reports, 2017, 7(1): 13134. doi: 10.1038/s41598-017-13464-3 |
[9] |
SHAZADEE H, KHAN N, WANG J, et al. Identification and expression profiling of protein phosphatases (PP2C) gene family in Gossypium hirsutum L[J]. International Journal of Molecular Sciences, 2019, 20(6): 1395. doi: 10.3390/ijms20061395 |
[10] |
MA Y, SZOSTKIEWICZ I, KORTE A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009, 324(5930): 1064 − 1068. doi: 10.1126/science.1172408 |
[11] |
SANTIAGO J, DUPEUX F, ROUND A, et al. The abscisic acid receptor PYR1 in complex with abscisic acid[J]. Nature, 2009, 462(7273): 665 − 668. doi: 10.1038/nature08591 |
[12] |
HAO Q, YIN P, LI W, et al. The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins[J]. Molecular Cell, 2011, 42(5): 662 − 672. doi: 10.1016/j.molcel.2011.05.011 |
[13] |
HRABAK E M, CHAN C W M, GRIBSKOV M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology, 2003, 132(2): 666 − 680. doi: 10.1104/pp.102.011999 |
[14] |
ZONG W, TANG N, YANG J, et al. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes[J]. Plant Physiology, 2016, 171(4): 2810 − 2825. doi: 10.1104/pp.16.00469 |
[15] |
WANG Z, REN Z, CHENG C, et al. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis[J]. Molecular Plant, 2020, 13(9): 1284 − 1297. doi: 10.1016/j.molp.2020.06.011 |
[16] |
DING Y, LI H, ZHANG X, et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Developmental Cell, 2015, 32(3): 278 − 289. doi: 10.1016/j.devcel.2014.12.023 |
[17] |
HU Y, JIANG L, WANG F, et al. Jasmonate regulates the inducer of cbf expression-C- repeat binding factor/dre binding factor1 cascade and freezing tolerance in Arabidopsis[J]. The Plant Cell, 2013, 25(8): 2907 − 2924. doi: 10.1105/tpc.113.112631 |
[18] |
李言, 余文才, 陈月异, 等. 巴西橡胶树过氧化氢酶基因HbCAT2的克隆及表达分析[J]. 分子植物育种, 2019, 17(21): 6993 − 7002. |
[19] |
DENG X, WANG J, LI Y, et al. Comparative transcriptome analysis reveals phytohormone signalings, heat shock module and ROS scavenger mediate the cold-tolerance of rubber tree[J]. Scientific Reports, 2018, 8(1): 4931. doi: 10.1038/s41598-018-23094-y |
[20] |
TANG C, YANG M, FANG Y, et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J]. Nature Plants, 2016, 2(6): 16073. doi: 10.1038/nplants.2016.73 |
[21] |
LI Y, QUAN C, YANG S, et al. Functional identification of ICE transcription factors in rubber tree[J]. Forests, 2022, 13(1): 52. doi: 10.3390/f13010052 |
[22] |
KULIK A, WAWER I, KRZYWIŃSKA E, et al. SnRK2 protein kinases-key regulators of plant response to abiotic stresses[J]. Omics, 2011, 15(12): 859 − 872. doi: 10.1089/omi.2011.0091 |
[23] |
WAN Z, LUO S, ZHANG Z, et al. Identification and expression profile analysis of the SnRK2 gene family in cucumber[J]. PeerJ, 2022, 10: e13994. doi: 10.7717/peerj.13994 |
[24] |
BONEH U, BITON I, SCHWARTZ A, et al. Characterization of the ABA signal transduction pathway in Vitis vinifera[J]. Plant Science, 2012, 187: 89 − 96. doi: 10.1016/j.plantsci.2012.01.015 |
[25] |
LIN Z, LI Y, WANG Y, et al. Initiation and amplification of SnRK2 activation in abscisic acid signaling[J]. Nature Communications, 2021, 12(1): 2456. doi: 10.1038/s41467-021-22812-x |
[26] |
BELDA-PALAZóN B, ADAMO M, VALERIO C, et al. A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth[J]. Nature Plants, 2020, 6(11): 1345 − 1353. doi: 10.1038/s41477-020-00778-w |
[27] |
WAADT R, SELLER C A, HSU P K, et al. Plant hormone regulation of abiotic stress responses[J]. Nature Reviews Molecular Cell Biology, 2022, 23(10): 680 − 694. doi: 10.1038/s41580-022-00479-6 |
[28] |
BOUDSOCQ M, BARBIER-BRYGOO H, LAURIÈRE C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2004, 279(40): 41758 − 41766. doi: 10.1074/jbc.M405259200 |
[29] |
FUJII H, VERSLUES P E, ZHU J K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis[J]. The Plant Cell, 2007, 19(2): 485 − 494. doi: 10.1105/tpc.106.048538 |
[30] |
KOBAYASHI Y, MURATA M, MINAMI H, et al. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors[J]. The Plant Journal, 2005, 44(6): 939 − 949. doi: 10.1111/j.1365-313X.2005.02583.x |
[31] |
陈娜娜. 葡萄SnRK2基因家族的全基因组鉴定、表达分析及VvSnRK2.2基因的功能验证 [D]. 南京: 南京农业大学, 2013. |
[32] |
KOBAYASHI Y, YAMAMOTO S, MINAMI H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase 2 family by hyperosmotic stress and abscisic acid[J]. Plant Cell, 2004, 16(5): 1163 − 1177. doi: 10.1105/tpc.019943 |
[33] |
CHEN X, DING Y, YANG Y, et al. Protein kinases in plant responses to drought, salt, and cold stress[J]. Journal of Integrative Plant Biology, 2021, 63(1): 53 − 78. doi: 10.1111/jipb.13061 |
[34] |
WANG X, LIU W C, ZENG X W, et al. HbSnRK2.6 functions in ABA-regulated cold stress response by promoting HbICE2 transcriptional activity in Hevea brasiliensis. Int J Mol Sci. , 2021, 22(23): 12707. |
[35] |
HUAI J, WANG M, HE J, et al. Cloning and characterization of the SnRK2 gene family from Zea mays[J]. Plant Cell Reports, 2008, 27(12): 1861 − 1868. doi: 10.1007/s00299-008-0608-8 |
[36] |
马宗桓, 毛娟, 李文芳, 等. 葡萄SnRK2家族基因的鉴定与表达分析[J]. 园艺学报, 2016, 43(10): 1891 − 1902. |
[37] |
HUSSAIN Q, ZHENG M, CHANG W, et al. Genome-wide identification and expression analysis of SnRK2 gene family in dormant vegetative buds of Liriodendron chinense in response to abscisic acid, chilling, and photoperiod. Genes, 2022, 13(8): 1305. |
[38] |
MASZKOWSKA J, SZYMAŃSKA K P, KASZTELAN A, et al. The multifaceted regulation of SnRK2 kinases[J]. Cells, 2021, 10(9): 2180. |