[1] SOMESTA N, SRICHAROENCHAIKUL V, AHT-ONG D. Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies [J]. Materials Chemistry and Physics, 2020, 240(1): 122221.
[2] 李鑫璐, 赵建海, 王康, 等. 氢氧化镁改性活性炭对Cu(Ⅱ)的吸附[J]. 精细化工, 2020, 37(1): 130 − 134. doi:  10.13550/j.jxhg.20190334
[3] 刘静, 金燚翥. 氧化铁改性活性炭制备表征及性能研究[J]. 炭素, 2020(3): 10 − 13.
[4] 张绍均, 陈毅贞, 张文生, 等. 三氯化铁改性活性炭对水中甲苯胺蓝的吸附[J]. 环境与健康杂志, 2020, 37(2): 168 − 172. doi:  10.16241/j.cnki.1001-5914.2020.02.017
[5] 张中杰, 伍雅婧, 王慧. 载铁(Fe3+)活性炭去除饮用水中砷的性能研究[J]. 世界科技研究与发展, 2014, 36(2): 129 − 132. doi:  10.3969/j.issn.1006-6055.2014.02.009
[6] LIU Y, LIU X, DONG W, et al. Efficient adsorption of sulfamethazine onto modified activated carbon: A plausible adsorption mechanism [J]. Scientific Reports, 2017, 7: 12437. doi:  10.1038/s41598-017-00043-9
[7] XIONG Y, TONG Q, SHAN W, et al. Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon [J]. Applied Surface Science, 2017, 416: 618 − 627.
[8] YI Y, WANG X, MA J, et al. Fe(III) modified Egeria najas driven-biochar for highly improved reduction and adsorption performance of Cr(VI) [J]. Powder Technology, 2021, 388: 485 − 495.
[9] WU Y, KONG L H, SHEN R F, et al. Highly dispersed and stable Fe species supported on active carbon for enhanced degradation of rhodamine B through peroxymonosulfate activation: mechanism analysis, response surface modeling and kinetic study [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107463.
[10] SHAARANI F W, HAMEED B H. Ammonia-modified activated carbon for the adsorption of 2, 4-dichlorophenol [J]. Chemical Engineering Journal, 2011, 169(1/2/3): 180 − 185.
[11] LI T, CHEN Y, WANG X, et al. Modifying organic carbon in Fe3O4-loaded schwertmannite to improve heterogeneous Fenton activity through accelerating Fe(II) generation [J]. Applied Catalysis B:Environmental, 2021, 285: 119830.
[12] TRINH V T, NGUYEN T M P, VAN H T, et al. Phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue [J]. Scientific Reports, 2020, 10(2): 3634.
[13] WANG S, WANG J. Synergistic effect of PMS activation by Fe0@Fe3O4 anchored on N, S, O co-doped carbon composite for degradation of sulfamethoxazole [J]. Chemical Engineering Journal, 2022, 427: 13.
[14] SHI Z L, LIU F M, YAO S H. Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe(III) oxide [J]. New Carbon Materials, 2011, 26(4): 299 − 306. doi:  10.1016/S1872-5805(11)60083-8
[15] WAN X, ZHAN Y, LONG Z, et al. Email protected structured magnetic halloysite nanotube nano-hybrid as efficient recyclable adsorbent for methylene blue removal [J]. Chemical Engineering Journal, 2017, 330: 491 − 504.
[16] BEDIA J, BELVER C, PONCE S, et al. Adsorption of antipyrine by activated carbons from FeCl3-activation of Tara gum [J]. Chemical Engineering Journal, 2018, 333: 58 − 65.
[17] GAO Y, YUE Q, GAO B, et al. Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7 and KOH [J]. Chemical Engineering Journal, 2013, 232: 582 − 590.
[18] ISLAM M A, SABAR S, BENHOURIA A, et al. Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74: 96 − 104.
[19] YANG B, LIU Y, LIANG Q, et al. Evaluation of activated carbon synthesized by one-stage and two-stage co-pyrolysis from sludge and coconut shell [J]. Ecotoxicology and Environmental Safety, 2019, 170: 722 − 731.
[20] NOWICKI P, KAZMIERCZAK J, PIETRZAK R. Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones [J]. Powder Technology, 2015, 269: 312 − 319.
[21] FANG R, HUANG H, JI J, et al. Efficient MnOx supported on coconut shell activated carbon for catalytic oxidation of indoor formaldehyde at room temperature [J]. Chemical Engineering Journal, 2018, 334: 2050 − 2057.
[22] LIN Y, LIAO Y, YU Z, et al. A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS [J]. Energy Conversion and Management, 2017, 151: 190 − 198.